📄 glcm_features1.m
字号:
hx = zeros(size_glcm_3,1);
hy = zeros(size_glcm_3,1);
hxy2 = zeros(size_glcm_3,1);
%Q = zeros(size(glcm));
for k = 1:size_glcm_3 % number glcms
glcm_sum(k) = sum(sum(glcm(:,:,k)));
glcm(:,:,k) = glcm(:,:,k)./glcm_sum(k); % Normalize each glcm
glcm_mean(k) = mean2(glcm(:,:,k)); % compute mean after norm
glcm_var(k) = (std2(glcm(:,:,k)))^2;
for i = 1:size_glcm_1
for j = 1:size_glcm_2
out.contr(k) = out.contr(k) + (abs(i - j))^2.*glcm(i,j,k);
out.dissi(k) = out.dissi(k) + (abs(i - j)*glcm(i,j,k));
out.energ(k) = out.energ(k) + (glcm(i,j,k).^2);
out.entro(k) = out.entro(k) - (glcm(i,j,k)*log(glcm(i,j,k) + eps));
out.homom(k) = out.homom(k) + (glcm(i,j,k)/( 1 + abs(i-j) ));
out.homop(k) = out.homop(k) + (glcm(i,j,k)/( 1 + (i - j)^2));
% [1] explains sum of squares variance with a mean value;
% the exact definition for mean has not been provided in
% the reference: I use the mean of the entire normalized glcm
out.sosvh(k) = out.sosvh(k) + glcm(i,j,k)*((i - glcm_mean(k))^2);
%out.invdc(k) = out.homom(k);
out.indnc(k) = out.indnc(k) + (glcm(i,j,k)/( 1 + (abs(i-j)/size_glcm_1) ));
out.idmnc(k) = out.idmnc(k) + (glcm(i,j,k)/( 1 + ((i - j)/size_glcm_1)^2));
u_x(k) = u_x(k) + (i)*glcm(i,j,k); % changed 10/26/08
u_y(k) = u_y(k) + (j)*glcm(i,j,k); % changed 10/26/08
% code requires that Nx = Ny
% the values of the grey levels range from 1 to (Ng)
end
end
out.maxpr(k) = max(max(glcm(:,:,k)));
end
% glcms have been normalized:
% The contrast has been computed for each glcm in the 3D matrix
% (tested) gives similar results to the matlab function
for k = 1:size_glcm_3
for i = 1:size_glcm_1
for j = 1:size_glcm_2
p_x(i,k) = p_x(i,k) + glcm(i,j,k);
p_y(i,k) = p_y(i,k) + glcm(j,i,k); % taking i for j and j for i
if (ismember((i + j),[2:2*size_glcm_1]))
p_xplusy((i+j)-1,k) = p_xplusy((i+j)-1,k) + glcm(i,j,k);
end
if (ismember(abs(i-j),[0:(size_glcm_1-1)]))
p_xminusy((abs(i-j))+1,k) = p_xminusy((abs(i-j))+1,k) +...
glcm(i,j,k);
end
end
end
% % consider u_x and u_y and s_x and s_y as means and standard deviations
% % of p_x and p_y
% u_x2(k) = mean(p_x(:,k));
% u_y2(k) = mean(p_y(:,k));
% s_x2(k) = std(p_x(:,k));
% s_y2(k) = std(p_y(:,k));
end
% marginal probabilities are now available [1]
% p_xminusy has +1 in index for matlab (no 0 index)
% computing sum average, sum variance and sum entropy:
for k = 1:(size_glcm_3)
for i = 1:(2*(size_glcm_1)-1)
out.savgh(k) = out.savgh(k) + (i+1)*p_xplusy(i,k);
% the summation for savgh is for i from 2 to 2*Ng hence (i+1)
out.senth(k) = out.senth(k) - (p_xplusy(i,k)*log(p_xplusy(i,k) + eps));
end
end
% compute sum variance with the help of sum entropy
for k = 1:(size_glcm_3)
for i = 1:(2*(size_glcm_1)-1)
out.svarh(k) = out.svarh(k) + (((i+1) - out.senth(k))^2)*p_xplusy(i,k);
% the summation for savgh is for i from 2 to 2*Ng hence (i+1)
end
end
% compute difference variance, difference entropy,
for k = 1:size_glcm_3
% out.dvarh2(k) = var(p_xminusy(:,k));
% but using the formula in
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
% we have for dvarh
for i = 0:(size_glcm_1-1)
out.denth(k) = out.denth(k) - (p_xminusy(i+1,k)*log(p_xminusy(i+1,k) + eps));
out.dvarh(k) = out.dvarh(k) + (i^2)*p_xminusy(i+1,k);
end
end
% compute information measure of correlation(1,2) [1]
for k = 1:size_glcm_3
hxy(k) = out.entro(k);
for i = 1:size_glcm_1
for j = 1:size_glcm_2
hxy1(k) = hxy1(k) - (glcm(i,j,k)*log(p_x(i,k)*p_y(j,k) + eps));
hxy2(k) = hxy2(k) - (p_x(i,k)*p_y(j,k)*log(p_x(i,k)*p_y(j,k) + eps));
% for Qind = 1:(size_glcm_1)
% Q(i,j,k) = Q(i,j,k) +...
% ( glcm(i,Qind,k)*glcm(j,Qind,k) / (p_x(i,k)*p_y(Qind,k)) );
% end
end
hx(k) = hx(k) - (p_x(i,k)*log(p_x(i,k) + eps));
hy(k) = hy(k) - (p_y(i,k)*log(p_y(i,k) + eps));
end
out.inf1h(k) = ( hxy(k) - hxy1(k) ) / ( max([hx(k),hy(k)]) );
out.inf2h(k) = ( 1 - exp( -2*( hxy2(k) - hxy(k) ) ) )^0.5;
% eig_Q(k,:) = eig(Q(:,:,k));
% sort_eig(k,:)= sort(eig_Q(k,:),'descend');
% out.mxcch(k) = sort_eig(k,2)^0.5;
% The maximal correlation coefficient was not calculated due to
% computational instability
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
end
corm = zeros(size_glcm_3,1);
corp = zeros(size_glcm_3,1);
% using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x s_y
for k = 1:size_glcm_3
for i = 1:size_glcm_1
for j = 1:size_glcm_2
s_x(k) = s_x(k) + (((i) - u_x(k))^2)*glcm(i,j,k);
s_y(k) = s_y(k) + (((j) - u_y(k))^2)*glcm(i,j,k);
corp(k) = corp(k) + ((i)*(j)*glcm(i,j,k));
corm(k) = corm(k) + (((i) - u_x(k))*((j) - u_y(k))*glcm(i,j,k));
out.cprom(k) = out.cprom(k) + (((i + j - u_x(k) - u_y(k))^4)*...
glcm(i,j,k));
out.cshad(k) = out.cshad(k) + (((i + j - u_x(k) - u_y(k))^3)*...
glcm(i,j,k));
end
end
% using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x
% s_y : This solves the difference in value of correlation and might be
% the right value of standard deviations required
% According to this website there is a typo in [2] which provides
% values of variance instead of the standard deviation hence a square
% root is required as done below:
s_x(k) = s_x(k) ^ 0.5;
s_y(k) = s_y(k) ^ 0.5;
out.autoc(k) = corp(k);
out.corrp(k) = (corp(k) - u_x(k)*u_y(k))/(s_x(k)*s_y(k));
out.corrm(k) = corm(k) / (s_x(k)*s_y(k));
% % alternate values of u and s
% out.corrp2(k) = (corp(k) - u_x2(k)*u_y2(k))/(s_x2(k)*s_y2(k));
% out.corrm2(k) = corm(k) / (s_x2(k)*s_y2(k));
end
% Here the formula in the paper out.corrp and the formula in matlab
% out.corrm are equivalent as confirmed by the similar results obtained
% % The papers have a slightly different formular for Contrast
% % I have tested here to find this formula in the papers provides the
% % same results as the formula provided by the matlab function for
% % Contrast (Hence this part has been commented)
% out.contrp = zeros(size_glcm_3,1);
% contp = 0;
% Ng = size_glcm_1;
% for k = 1:size_glcm_3
% for n = 0:(Ng-1)
% for i = 1:Ng
% for j = 1:Ng
% if (abs(i-j) == n)
% contp = contp + glcm(i,j,k);
% end
% end
% end
% out.contrp(k) = out.contrp(k) + n^2*contp;
% contp = 0;
% end
%
% end
% GLCM Features (Soh, 1999; Haralick, 1973; Clausi 2002)
% f1. Uniformity / Energy / Angular Second Moment (done)
% f2. Entropy (done)
% f3. Dissimilarity (done)
% f4. Contrast / Inertia (done)
% f5. Inverse difference
% f6. correlation
% f7. Homogeneity / Inverse difference moment
% f8. Autocorrelation
% f9. Cluster Shade
% f10. Cluster Prominence
% f11. Maximum probability
% f12. Sum of Squares
% f13. Sum Average
% f14. Sum Variance
% f15. Sum Entropy
% f16. Difference variance
% f17. Difference entropy
% f18. Information measures of correlation (1)
% f19. Information measures of correlation (2)
% f20. Maximal correlation coefficient
% f21. Inverse difference normalized (INN)
% f22. Inverse difference moment normalized (IDN)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -