📄 rls_demo.m
字号:
% RLS Algorithm randn('seed', 0) ;rand('seed', 0) ;NoOfData = 8000 ; % Set no of data points used for trainingOrder = 32 ; % Set the adaptive filter orderLambda = 0.98 ; % Set the forgetting factorDelta = 0.001 ; % R initialized to Delta*Ix = randn(NoOfData, 1) ;% Input assumed to be whiteh = rand(Order, 1) ; % System picked randomlyd = filter(h, 1, x) ; % Generate output (desired signal)% Initialize RLSP = Delta * eye ( Order, Order ) ;w = zeros ( Order, 1 ) ;% RLS Adaptationfor n = Order : NoOfData ; u = x(n:-1:n-Order+1) ; pi_ = u' * P ; k = Lambda + pi_ * u ; K = pi_'/k; e(n) = d(n) - w' * u ; w = w + K * e(n) ; PPrime = K * pi_ ; P = ( P - PPrime ) / Lambda ; w_err(n) = norm(h - w) ;end ;% Plot resultsfigure ;plot(20*log10(abs(e))) ;title('Learning Curve') ;xlabel('Iteration Number') ;ylabel('Output Estimation Error in dB') ;figure ;semilogy(w_err) ;title('Weight Estimation Error') ;xlabel('Iteration Number') ;ylabel('Weight Error in dB') ;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -