📄 fast_lms.m
字号:
% Fast LMS Algorithmrandn('seed', 0) ;rand('seed', 0) ;NoOfData = 8000 ; % Set no of data points used for trainingM = 32 ; % Set the adaptive filter orderMu = 0.01 ; % Set the step-size constantGamma = 0.9 ; % Forgetting factorDelta = 0.01 ; % R_est initialized to Delta*Iu = randn(NoOfData, 1) ;% Input assumed to be whiteh = rand(M, 1) ; % System picked randomlyd = filter(h, 1, u) ; % Generate output (desired signal)% Initialize fast-lmsW = zeros(2*M,1) ;p = Delta*ones(2*M,1) ;y = zeros(M, 1) ;e = zeros(M, 1) ;for k = 2 : floor(length(u)/M) - 1 ; U = fft(u((k-1)*M:(k+1)*M-1)) ; Y = ifft(U.*W) ; y(k*M:(k+1)*M-1) = real(Y(M+1:2*M)) ; e(k*M:(k+1)*M-1) = d(k*M:(k+1)*M-1) - y(k*M:(k+1)*M-1) ; E = fft([zeros(M,1); e(k*M:(k+1)*M-1)]) ; p = Gamma*p+(1-Gamma)*abs(U).^2 ; p_inv = 1./p ; PHI = ifft(p .* conj(U) .* E) ; phi = real(PHI(1 : M )) ; W = W + Mu / (2*M) * fft([phi; zeros(M,1)]) ;end ;% Plot resultsfigure ;plot(20*log10(abs(e))) ;title('Learning Curve') ;xlabel('Iteration Number') ;ylabel('Output Estimation Error in dB') ;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -