📄 iirbcf.c
字号:
#include"math.h"
#include"stdlib.h"
/*ifilt: 取值1、2、3分别对应切比雪夫、逆切比雪夫和巴特沃兹滤波器;
band: 1、2、3、4分别对应低通、高通、带通、带阻滤波器;
ns:滤波器的n阶节数;
n:滤波器每节的阶数;低通、高通,n=2;带通、带阻,n=4;
db:滤波器阻带衰减(db表示);
巴特沃兹滤波器:低通时,f1是通带边界频率,其它为0;
高通时,f2是通带边界频率,其它为0;
带通时,f2是通带下边界频率,f3是通带上边界频率,f1=f4=0;
带阻时,f1是通带下边界频率,f4是通带上边界频率,f2=f3=0;
切比雪夫滤波器:低通时,f1是通带边界频率,f2是阻带边界频率,f3=f4=0;
高通时,f2是通带边界频率,f1是阻带边界频率,f3=f4=0;
带通时,f2通带下边界频率,f3是通带上边界频率,f1是阻带下边界频率,f4是阻带上边界频率;
带阻时,f1是通带下边界频率,f4是通带上边界频率,f2是阻带下边界频率,f3是阻带上边界频率;
b:二维数组,体积为ns*(n+1);存放滤波器分子多项式系数,b[j][i]为第j个n阶节的分子多项式的第i个系数;
a:二维数组,体积为ns*(n+1);存放滤波器分子多项式系数,b[j][i]为第j个n阶节的分子多项式的第i个系数;
*/
void iirbcf(ifilt,band,ns,n,f1,f2,f3,f4,db,b,a)
double b[],a[],f1,f2,f3,f4,db;
int ifilt,band,ns,n;
{ int k;
double omega,lamda,epslon,fl,fh;
double d[5],c[5];
void chebyi(),chebyii(),bwtf();
double cosh1(),warp(),bpsub(),omin();
void fblt();
if((band==1)||(band==4)) fl=f1;/*fl是通带下边界频率*/
if((band==2)||(band==3)) fl=f2;
if(band<=3) fh=f3;/*fh是通带上边界频率*/
if(band==4) fh=f4;
if(ifilt<3) /*ifilt: 取值1、2、3分别对应切比雪夫、逆切比雪夫和巴特沃兹滤波器;*/
{ switch(band) /*band: 1、2、3、4分别对应低通、高通、带通、带阻滤波器;*/
{ case 1:
case 2:
{ omega=warp(f2)/warp(f1);
break;
}
case 3:
{ omega=omin(bpsub(warp(f1),fh,fl),bpsub(warp(f4),fh,fl));
break;
}
case 4:
{ omega=omin(1.0/bpsub(warp(f2),fh,fl),1.0/bpsub(warp(f3),fh,fl));
}
lamda=pow(10.0,(db/20.0));
epslon=lamda/cosh(2*ns*cosh1(omega));
}
for(k=0;k<ns;k++)
{ switch(ifilt) /*ifilt: 取值1、2、3分别对应切比雪夫、逆切比雪夫和巴特沃兹滤波器;*/
{ case 1:
{ chebyi(2*ns,k,4,epslon,d,c);
break;
}
case 2:
{ chebyii(2*ns,k,4,omega,lamda,d,c);
break;
}
case 3:
{ bwtf(2*ns,k,4,d,c);
break;
}
}
fblt(d,c,n,band,fl,fh,&b[k*(n+1)+0],&a[k*(n+1)+0]);
}
}
static double cosh1(x)
double x;
{ double z;
z=log(x+sqrt(x*x-1.0));
return(z);
}
static double warp(f)
double f;
{ double pi,z;
pi=4.0*atan(1.0);
z=tan(pi*f);
return(z);
}
static double bpsub(om,fh,fl)
double om,fh,fl;
{ double z;
z=(om*om-warp(fh)*warp(fl))/((warp(fh)-warp(fl))*om);
return(z);
}
static double omin(om1,om2) /*求om1,om2中的较小值;*/
double om1,om2;
{ double z,z1,z2;
z1=fabs(om1);
z2=fabs(om2);
z=(z1<z2)?z1:z2;
return(z);
}
/*巴特沃斯滤波器;
ln:为滤波器的阶次N;k: 第k个极点;n:分子分母多项式长度;d[]为分子系数;c[]为分母系数;*/
static void bwtf(ln,k,n,d,c)
int ln,k,n;
double d[],c[];
{ int i;
double pi,tmp;
pi=4.0*atan(1.0);
d[0]=1.0;
c[0]=1.0;
for(i=1;i<=n;i++)
{ d[i]=0.0;
c[i]=0.0;
}
tmp=(k+1)- (ln+1.0)/2.0;
if(tmp==0.0)
{ c[1]=1.0;}
else
{ c[1]=-2.0*cos((2*(k+1)+ln-1)*pi/(2*ln));
c[2]=1.0;
}
}
/*切比雪夫滤波器*/
static void chebyi(ln,k,n,ep,d,c)
double d[],c[],ep;
in ln,k,n;
{ int i;
double pi,gam,omega,sigma;
pi =4.0*atan(1.0);
gam=pow(((1.0+sqrt(1.0+ep*ep))/ep),1.0/ln);
sigma=0.5*(1.0/gam-gam)*sin((2*(k+1)-1)*pi/(2*ln));
omega=0.5*(1.0/gam+gam)*cos((2*(k+1)-1)*pi/(2*ln));
for(i=0;i<=n;i++)
{ d[i]=0.0;
c[i]=0.0;
}
if(((ln%2)==1&&((k+1)==(ln+1)/2)
{ d[0]=-sigma;
c[0]=d[0];
c[1]=1.0;
}
else
{ c[0]=sigma*sigma+omega*omega;
c[1]=-2.0*sigma;
c[2]=1.0;
d[0]=c[0];
if(((ln%2)==0)&&(k==0))
d[0]=d[0]/sqrt(1.0+ep*ep);
}
}
/*逆切比雪夫滤波器*/
static void chebyii(ln,k,n,ws,att,d,c)
double d[],c[],wa,att;
int ln,k,n;
{ int i;
double pi,gam,alpha,beta,sigma,omega,scln,scld;
pi=4.0*atan(1.0);
gam=pow((att+sqrt(att*att-1.0)),1.0/ln);
alphaa=0.5*(1.0/gam-gam)*sin((2*(k+1)-1)*pi/(2*ln));
beta=0.5*(1.0/gam+gam)*cos((2*(k+1)-1)*pi/(2*ln));
sigma=wa*alpha/(alpha*alpha+beta*beta);
omega=-1.0*wa*beta/(alpha*alpha+beta*beta);
for(i=0;i<=n;i++)
{ d[i]=0.0;
c[i]=0.0;
}
if(((ln%2)==1)&&((k+1)==(ln+1)/2))
{ d[0]=-1.0*sigma;
c[0]=d[0];
c[1]=1.0;
}
else
{ scln=sigma*sigma+omega*omega;
scld=pow((wa/cos((2*(k+1)-1)*pi/(2*ln))),2);
d[0]=scln*scld;
d[2]=scln;
c[0]=d[0];
c[1]=-2.0*sigma*scld;
c[2]=scld;
}
}
static void fblt(d,c,n,band,fln,fhn,b,a)
int n,band;
double fln,fhn,d[],c[],b[],a[];
{ int i,k,m,n1,n2,ls;
double pi,w,w0,w1,w2,tmp,tmpd,tmpc,*work;
double combin();
void bilinear();
pi=4.0*atan(1.0);
w1=tan(pi*fln);
for(i=n;i>=0;i--)
{ if((c[i]!=0.0)||(d[i]!=0.0))
break;
}
m=i;
switch(band)
{ case 1:
case 2:
{ n2=m;
n1=n2+1;
if(band==2)
{ for(i=0;i<=m/2;i++)
{ tmp=d[i];
d[i]=d[m-i];
d[m-i]=tmp;
tmp=c[i];
c[i]=c[m-i];
c[m-i]=tmp;
}
}
for(i=0;i<=m;i++)
{ d[i]=d[i]/pow(w1,i);
c[i]=c[i]/pow(w1,i);
}
break;
}
case 3:
case 4:
{ n2=2*m;
n1=n2+1;
work=malloc(n1*n1*sizeof(double));
w2=tan(pi*fhn);
w=w2-w1;
w0=w1*w2;
if(band==4)
{ for(i=0;i<=m/2;i++)
{ tmp=d[i];
d[i]=d[m-i];
d[m-i]=tmp;
tmp=c[i];
c[i]=c[m-i];
c[m-i]=tmp;
}
}
for(i=0;i<=n2;i++)
{ work[0*n1+i]=0.0;
work[1*nl+i]=0.0;
}
for(i=0;i<=m;i++)
{ tmpd=d[i]*pow(w,(m-i));
tmpc=c[i]*pow(w,(m-i));
for(k=0;k<=i;k++)
{ ls=m+i-2*k;
tmp=combin(i,i)/(combin(k,k)*combin(i-k,i-k);
work[0*n1+ls]+=tmpd*pow(w0,k)*tmp;
work[1*n1+ls]+=tmpc*pow(w0,k)*tmp;
}
}
for(i=0;i<=n2;i++)
{ d[i]=work[0*n1+i];
d[i]=work[1*n1+i];
}
free(work);
}
}
bilinear(d,c,b,a,n);
}
static double combin(i1,i2)
int i1,i2;
{ int i;
double s;
s=1.0;
if(i2==0) return(s);
for(i=i1;i>(i1-i2);i--)
{ s*=i; }
return(s);
}
/*双线性变换法*/
static void bilinear(d,c,b,a,n)
int n;
double d[],c[],b[],a[];
{ int i,j,n1;
double sum,atmp,scale,*temp;
n1=n+1;
temp=malloc(n1*n1*sizeof(double));
for(j=0;j<=n;j++)
{temp[j*n1+0]=1.0;}
sum=1.0;
for(i=1;i<=n;i++)
{ sum=sum*(double)(n-i+1)/(double)i;
temp[0*n1+i]=sum;
}
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{ temp[j*n1+i]=temp[(j-1)*n1+i]-temp[j*n1+i-1]-temp[(j-1)*n1+i-1];
}
for(i=n;i>=0;i--)
{ b[i]=0.0;
atmp=0.0;
for(j=0;j<=n;j++)
{ b[i]=b[i]+temp[j*n1+i]*d[j];
atmp=atmp+temp[j+n1+i]*c[j];
}
scale=atmp;
if(i!=0) a[i]=atmp;
}
for(i=0;i<=n;i++)
{ b[i]=b[i]/scale;
a[i]=a[i]/scale;
}
a[0]=1.0;
free(temp);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -