📄 aga.txt
字号:
for(j = 0; j < stop; j++)
{
if(tmp&mask)
printf("1");
else
printf("0");
tmp = tmp>>1;
}
}
}
void preselect()//预选函数
{
int j;
sumfitness = 0;
for(j = 0; j < popsize; j++) sumfitness += oldpop[j].fitness;//初始化时第一代的适应值和
}
int select() // 轮盘赌选择
{
extern float randomperc();
float sum, pick;
int i;
pick = randomperc();//一个随机数
sum = 0;
if(sumfitness != 0)
{
for(i = 0; (sum < pick) && (i < popsize); i++)
sum += (float)(oldpop[i].fitness/sumfitness);
}
else
i = rnd(1,popsize);//产生一个随机整数
return(i-1);
}
void statistics(struct individual *pop) // 计算种群统计数据
{
int i, j;
sumfitness = 0.0;
min = pop[0].fitness;
max = pop[0].fitness;
// 计算最大、最小和累计适应度
for(j = 0; j < popsize; j++)
{
sumfitness = sumfitness + pop[j].fitness;
if(pop[j].fitness > max) max = pop[j].fitness;
if(pop[j].fitness < min) min = pop[j].fitness;
// new global best-fit individual
if(pop[j].fitness > bestfit.fitness)
{
for(i = 0; i < chromsize; i++)
bestfit.chrom[i] = pop[j].chrom[i];
bestfit.fitness = pop[j].fitness;
bestfit.varible = pop[j].varible;
bestfit.generation = gen;
}
}
// 计算平均适应度
avg = sumfitness/popsize;
}
void title()
{
printf("SGA Optimizer");
printf("基本遗传算法\n");
}
void repchar (FILE *outfp,char *ch,int repcount)//输出
{
int j;
for (j = 1; j <= repcount; j++) printf("%s", ch);
}
void skip(FILE *outfp,int skipcount)//输出回车
{
int j;
for (j = 1; j <= skipcount; j++) printf("\n");
}
void objfunc(struct individual *critter) // 计算适应度函数值
{
unsigned mask=1;
unsigned bitpos;
unsigned tp;
double bitpow ;
int j, k, stop;
critter->varible = 0.0;
for(k = 0; k < chromsize; k++)
{
if(k == (chromsize-1))
stop = lchrom-(k*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
tp = critter->chrom[k];
for(j = 0; j < stop; j++)
{
bitpos = j + (8*sizeof(unsigned))*k;
if((tp&mask) == 1)
{
bitpow = pow(2.0,(double) bitpos);
critter->varible = critter->varible + bitpow;
}
tp = tp>>1;
}
}
critter->varible =-1+critter->varible*3/(pow(2.0,(double)lchrom)-1);//变异概率
critter->fitness =critter->varible*sin(critter->varible*10*atan(1)*4)+2.0;//适应度函数
}
void mutation(unsigned *child) //变异操作
{
int j, k, stop;
unsigned mask, temp = 1;//temp是模板
for(k = 0; k < chromsize; k++)
{
mask = 0;
if(k == (chromsize-1))
stop = lchrom - (k*(8*sizeof(unsigned)));
else
stop = 8*sizeof(unsigned);
for(j = 0; j < stop; j++)
{
if(flip(pmutation))//以pmutation概率产生1,即以此概率变异
{
mask = mask|(temp<<j);
nmutation++;
}
}
if(mask)//将确定要变异的个体(mask=1)与当代最优个体进行逐位比较,相同则赋以较小的变异概率,不同则赋以稍大的概率
{
int j1, k1, stop1;
unsigned mask1 = 1, tmp,tmp1;
for(k1 = 0; k1 < chromsize; k1++)
{
tmp =bestfit.chrom[k];
tmp1=child[k];
if(k1 == (chromsize-1))
stop1 = lchrom - (k1*(8*sizeof(unsigned)));
else
stop1 =8*sizeof(unsigned);
for(j1 = 0; j1< stop; j1++)
{
if(tmp&tmp1)
pmutation=pm1;
else
pmutation=pm1-(pm1-pm2)*(max-newpop[j].fitness)/(max-avg);
if(flip(pmutation))
child[k] = child[k]^mask;//^表示次方,变异操作
tmp=tmp>>1;
tmp1=tmp1>>1;
}
}
}
}
}
int crossover (unsigned *parent1, unsigned *parent2, unsigned *child1, unsigned *child2)
// 由两个父个体交叉产生两个子个体
{
int j, jcross, k;
unsigned mask, temp;
//自适应交叉概率
double fp_fitness = 0; //用来确定交叉概率的适应度值
if(gen!=0)
{
if(oldpop[temp_mate1].fitness>=oldpop[temp_mate2].fitness)
fp_fitness = oldpop[temp_mate1].fitness;
else
fp_fitness = oldpop[temp_mate2].fitness;
if(fp_fitness>=avg) //若此时适应度值大于平均适应度值,则减小交叉概率
pcross = pc1-(pc1-pc2)*(fp_fitness-avg)/(max-avg);
else //否则不变
pcross = pc2;
}
if(flip(pcross))//以pcross概率产生0或1
{
jcross = rnd(1 ,(lchrom - 1));// 产生交叉位
ncross++;
for(k = 1; k <= chromsize; k++)
{
if(jcross >= (k*32))//32=(k*(8*sizeof(unsigned))),即交叉位为最后一位
{
child1[k-1] = parent1[k-1];//直接复制
child2[k-1] = parent2[k-1];
}
else if((jcross < (k*32)) && (jcross > ((k-1)*32)))
{
mask = 1;
for(j = 1; j <= (jcross-1-((k-1)*32)); j++)
{
temp = 1;
mask = mask<<1;
mask = mask|temp;
}
//交叉最后不到一个字节的基因
child1[k-1] = (parent1[k-1]&mask)|(parent2[k-1]&(~mask));
child2[k-1] = (parent1[k-1]&(~mask))|(parent2[k-1]&mask);
}
else
{
child1[k-1] = parent2[k-1];
child2[k-1] = parent1[k-1];
}
}
}
else //交叉
{
for(k = 0; k < chromsize; k++)
{
child1[k] = parent1[k];
child2[k] = parent2[k];
}
jcross = 0;
}
return(jcross);
}
void advance_random() // 产生55个随机数
{
int j1;
double new_random;
for(j1 = 0; j1 < 24; j1++)
{
new_random = oldrand[j1] - oldrand[j1+31];
if(new_random < 0.0) new_random = new_random + 1.0;//矫正
oldrand[j1] = new_random;
}
for(j1 = 24; j1 < 55; j1++)
{
new_random = oldrand [j1] - oldrand [j1-24];
if(new_random < 0.0) new_random = new_random + 1.0;
oldrand[j1] = new_random;
}
}
int flip(double prob) // 以一定概率产生0或1
{
float randomperc();
if(randomperc() <= prob)
return(1);
else
return(0);
}
void randomize() // 设定随机数种子并初始化随机数发生器
{
float randomseed;
int j1;
for(j1=0; j1<=54; j1++)
oldrand[j1] = 0.0;
jrand=0;
//do
// {
printf("随机数种子[0-1]:");
scanf("%f", &randomseed);
// }
// while((randomseed < 0.0) || (randomseed > 1.0));
warmup_random(randomseed);
}
double randomnormaldeviate() // 产生随机标准差
{
//double sqrt(), log(), sin(), cos();
float randomperc();
double t, rndx1;
if(rndcalcflag)
{ rndx1 = sqrt(- 2.0*log((double) randomperc()));
t = 6.2831853072 * (double) randomperc();
rndx2 = rndx1 * sin(t);
rndcalcflag = 0;
return(rndx1 * cos(t));
}
else
{
rndcalcflag = 1;
return(rndx2);
}
}
float randomperc() //与库函数random()作用相同, 产生[0,1]之间一个随机数
{
jrand++;
if(jrand >= 55)
{
jrand = 1;
advance_random();
}
return((float) oldrand[jrand]);
}
int rnd(int low, int high) //在整数low和high之间产生一个随机整数
{
int i;
float randomperc();
if(low >= high)
i = low;
else
{
i =(int)((randomperc() * (high - low + 1)) + low);
if(i > high) i = high;
}
return(i);
}
void warmup_random(float random_seed) // 初始化随机数发生器
{
int j1, ii;
double new_random, prev_random;
oldrand[54] = random_seed;
new_random = 0.000000001;
prev_random = random_seed;
for(j1 = 1 ; j1 <= 54; j1++)
{
ii = (21*j1)%54;
oldrand[ii] = new_random;
new_random = prev_random-new_random;//新一代的随机数概率要小于前代
if(new_random<0.0) new_random = new_random + 1.0;
prev_random = oldrand[ii];
}
//多次调用随机数函数,使得随机数更加随机
advance_random();
advance_random();
advance_random();
jrand = 0;
}
void main(int argc,char *argv[]) // 主程序
{
struct individual *temp;
title();
printf("输入遗传算法执行次数(1-5):");
scanf("%d",&maxruns);
for(run=1; run<=maxruns; run++)
{
initialize();
for(gen=0; gen<maxgen; gen++)
{
printf("\n第 %d / %d 次运行: 当前代为 %d, 共 %d 代\n", run,maxruns,gen,maxgen);
// 产生新一代
generation();
// 计算新一代种群的适应度统计数据
statistics(newpop);
// 输出新一代统计数据
report();
temp = oldpop;
oldpop = newpop;
newpop = temp;
}
freeall();
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -