⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 johnson_all_pairs_shortest.hpp

📁 图论必用
💻 HPP
📖 第 1 页 / 共 2 页
字号:
  Vertex source(detail::ssv_graph_edge<Vertex,Weight> e, Graph&)   { return e._s; }  template <class Vertex, class Weight, class Graph>  Vertex target(detail::ssv_graph_edge<Vertex,Weight> e, Graph&)   { return e._t; }*/  template <class VertexAndEdgeListGraph, class VertexIDMap,     class WeightMap, typename DistanceZero>  typename detail::ssv_graph_help<    VertexAndEdgeListGraph,     VertexIDMap, WeightMap, DistanceZero>::edges_ret_type  edges(const detail::single_source_vertex_graph<          VertexAndEdgeListGraph, VertexIDMap, WeightMap, DistanceZero>& g) {    typedef detail::single_source_vertex_graph<          VertexAndEdgeListGraph, VertexIDMap, WeightMap, DistanceZero> graph;    typedef typename graph_traits<VertexAndEdgeListGraph>::edge_iterator native_ei;    native_ei ei,eiend;    tie(ei,eiend) = edges(g._g);    return std::make_pair(        graph_traits<graph>::edge_iterator(true, 1, num_vertices(g._g)+1,            ei, eiend, g._g, g._id, g._w, g._zero),        graph_traits<graph>::edge_iterator(false, num_vertices(g._g)+1,            num_vertices(g._g)+1, eiend, eiend, g._g, g._id, g._w, g._zero));  }  template <class VertexAndEdgeListGraph, class VertexIDMap,     class WeightMap, typename DistanceZero>  typename detail::ssv_graph_help<    VertexAndEdgeListGraph, VertexIDMap,       WeightMap, DistanceZero>::num_edges_ret_type  num_edges(const detail::single_source_vertex_graph<              VertexAndEdgeListGraph, VertexIDMap, WeightMap, DistanceZero>& g) {    return num_edges(g._g) + num_vertices(g._g);  }  template <class Vertex, class Weight>  Weight get(const detail::ssv_edge_weight_map<Vertex,Weight>&,     detail::ssv_graph_edge<Vertex,Weight>& e)  { return e._w; }  template <class Vertex, class Weight>  struct property_traits<detail::ssv_edge_weight_map<Vertex,Weight> > {    typedef readable_property_map_tag category;    typedef Weight value_type;    typedef detail::ssv_graph_edge<Vertex,Weight> key_type;    typedef value_type reference;  };  template <class VertexAndEdgeListGraph, class DistanceMatrix,            class VertexID, class Weight, typename BinaryPredicate,             typename BinaryFunction, typename Infinity, class DistanceZero>  bool  johnson_all_pairs_shortest_paths(VertexAndEdgeListGraph& g1,                DistanceMatrix& D,                VertexID id1, Weight w1, const BinaryPredicate& compare,                const BinaryFunction& combine, const Infinity& inf,               DistanceZero zero)  {    typedef detail::single_source_vertex_graph<VertexAndEdgeListGraph,        VertexID,Weight,DistanceZero> graph_ssv;    typedef typename property_traits<Weight>::value_type DT;    graph_ssv gssv(g1, id1, w1, zero);    std::vector<DT> d_vec(num_vertices(g1)+1, inf);    std::vector<DT> h_vec(num_vertices(g1)+1);    typedef typename std::vector<DT>::iterator iter_t;    iterator_property_map<iter_t,identity_property_map,DT,DT&>         d(d_vec.begin(), identity_property_map());    iterator_property_map<iter_t,identity_property_map,DT,DT&>         h(h_vec.begin(), identity_property_map());    detail::ssv_edge_weight_map<graph_traits<graph_ssv>::vertex_descriptor,        property_traits<Weight>::value_type> w2;    dummy_property_map pred; bellman_visitor<> bvis;    if (bellman_ford_shortest_paths      (gssv, num_vertices(g1)+1, w2, pred, d, combine, compare, bvis))    {        return true;    } else      return false;    /*typedef graph_traits<VertexAndEdgeListGraph> Traits1;    typedef typename property_traits<Weight>::value_type DT;    function_requires< BasicMatrixConcept<DistanceMatrix,      typename Traits1::vertices_size_type, DT> >();    typedef typename Traits1::directed_category DirCat;    bool is_undirected = is_same<DirCat, undirected_tag>::value;    typedef adjacency_list<vecS, vecS, directedS,       property< vertex_distance_t, DT>,      property< edge_weight_t, DT,       property< edge_weight2_t, DT > > > Graph2;    typedef graph_traits<Graph2> Traits2;    Graph2 g2(num_vertices(g1) + 1);    typename property_map<Graph2, edge_weight_t>::type       w = get(edge_weight, g2);    typename property_map<Graph2, edge_weight2_t>::type       w_hat = get(edge_weight2, g2);    typename property_map<Graph2, vertex_distance_t>::type       d = get(vertex_distance, g2);    typedef typename property_map<Graph2, vertex_index_t>::type VertexID2;    VertexID2 id2 = get(vertex_index, g2);    // Construct g2 where V[g2] = V[g1] U {s}    //   and  E[g2] = E[g1] U {(s,v)| v in V[g1]}    std::vector<typename Traits1::vertex_descriptor>       verts1(num_vertices(g1) + 1);    typename Traits2::vertex_descriptor s = *vertices(g2).first;    {      typename Traits1::vertex_iterator v, v_end;      int i = 1;      for (tie(v, v_end) = vertices(g1); v != v_end; ++v, ++i) {        typename Traits2::edge_descriptor e; bool z;        tie(e, z) = add_edge(s, get(id1, *v) + 1, g2);        put(w, e, zero);        verts1[i] = *v;      }      typename Traits1::edge_iterator e, e_end;      for (tie(e, e_end) = edges(g1); e != e_end; ++e) {        typename Traits2::edge_descriptor e2; bool z;        tie(e2, z) = add_edge(get(id1, source(*e, g1)) + 1,                               get(id1, target(*e, g1)) + 1, g2);        put(w, e2, get(w1, *e));        if (is_undirected) {          tie(e2, z) = add_edge(get(id1, target(*e, g1)) + 1,                                 get(id1, source(*e, g1)) + 1, g2);          put(w, e2, get(w1, *e));        }      }    }    typename Traits2::vertex_iterator v, v_end, u, u_end;    typename Traits2::edge_iterator e, e_end;    std::vector<DT> h_vec(num_vertices(g2));    typedef typename std::vector<DT>::iterator iter_t;    iterator_property_map<iter_t,VertexID2,DT,DT&> h(h_vec.begin(), id2);    for (tie(v, v_end) = vertices(g2); v != v_end; ++v)      d[*v] = inf;    put(d, s, zero);    // Using the non-named parameter versions of bellman_ford and    // dijkstra for portability reasons.    dummy_property_map pred; bellman_visitor<> bvis;    if (bellman_ford_shortest_paths        (g2, num_vertices(g2), w, pred, d, combine, compare, bvis)) {      for (tie(v, v_end) = vertices(g2); v != v_end; ++v)        put(h, *v, get(d, *v));      // Reweight the edges to remove negatives      for (tie(e, e_end) = edges(g2); e != e_end; ++e) {        typename Traits2::vertex_descriptor a = source(*e, g2),          b = target(*e, g2);        put(w_hat, *e, get(w, *e) + get(h, a) - get(h, b));      }      for (tie(u, u_end) = vertices(g2); u != u_end; ++u) {        dijkstra_visitor<> dvis;        dijkstra_shortest_paths          (g2, *u, pred, d, w_hat, id2, compare, combine, inf, zero,dvis);        for (tie(v, v_end) = vertices(g2); v != v_end; ++v) {          if (*u != s && *v != s) {            typename Traits1::vertex_descriptor u1, v1;            u1 = verts1[id2[*u]]; v1 = verts1[id2[*v]];            D[id2[*u]-1][id2[*v]-1] = get(d, *v) + get(h, *v) - get(h, *u);          }        }      }      return true;    } else      return false;*/  }  template <class VertexAndEdgeListGraph, class DistanceMatrix,            class VertexID, class Weight, class DistanceZero>  bool  johnson_all_pairs_shortest_paths(VertexAndEdgeListGraph& g1,                DistanceMatrix& D,               VertexID id1, Weight w1, DistanceZero zero)  {    typedef typename property_traits<Weight>::value_type WT;    return johnson_all_pairs_shortest_paths(g1, D, id1, w1,                                             std::less<WT>(),                                            closed_plus<WT>(),                                            (std::numeric_limits<WT>::max)(),                                            zero);  }  namespace detail {    template <class VertexAndEdgeListGraph, class DistanceMatrix,              class P, class T, class R, class Weight,               class VertexID>    bool    johnson_dispatch(VertexAndEdgeListGraph& g,                      DistanceMatrix& D,                     const bgl_named_params<P, T, R>& params,                     Weight w, VertexID id)    {      typedef typename property_traits<Weight>::value_type WT;            return johnson_all_pairs_shortest_paths        (g, D, id, w,        choose_param(get_param(params, distance_compare_t()),           std::less<WT>()),        choose_param(get_param(params, distance_combine_t()),           closed_plus<WT>()),        choose_param(get_param(params, distance_inf_t()),           std::numeric_limits<WT>::max BOOST_PREVENT_MACRO_SUBSTITUTION()),         choose_param(get_param(params, distance_zero_t()), WT()) );    }  } // namespace detail  template <class VertexAndEdgeListGraph, class DistanceMatrix,            class P, class T, class R>  bool  johnson_all_pairs_shortest_paths    (VertexAndEdgeListGraph& g,      DistanceMatrix& D,     const bgl_named_params<P, T, R>& params)  {    return detail::johnson_dispatch      (g, D, params,       choose_const_pmap(get_param(params, edge_weight), g, edge_weight),       choose_const_pmap(get_param(params, vertex_index), g, vertex_index)       );  }  template <class VertexAndEdgeListGraph, class DistanceMatrix>  bool  johnson_all_pairs_shortest_paths    (VertexAndEdgeListGraph& g, DistanceMatrix& D)  {    bgl_named_params<int,int> params(1);    return detail::johnson_dispatch      (g, D, params, get(edge_weight, g), get(vertex_index, g));  }} // namespace boost#endif // BOOST_GRAPH_JOHNSON_HPP

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -