📄 johnson_all_pairs_shortest.hpp
字号:
Vertex source(detail::ssv_graph_edge<Vertex,Weight> e, Graph&) { return e._s; } template <class Vertex, class Weight, class Graph> Vertex target(detail::ssv_graph_edge<Vertex,Weight> e, Graph&) { return e._t; }*/ template <class VertexAndEdgeListGraph, class VertexIDMap, class WeightMap, typename DistanceZero> typename detail::ssv_graph_help< VertexAndEdgeListGraph, VertexIDMap, WeightMap, DistanceZero>::edges_ret_type edges(const detail::single_source_vertex_graph< VertexAndEdgeListGraph, VertexIDMap, WeightMap, DistanceZero>& g) { typedef detail::single_source_vertex_graph< VertexAndEdgeListGraph, VertexIDMap, WeightMap, DistanceZero> graph; typedef typename graph_traits<VertexAndEdgeListGraph>::edge_iterator native_ei; native_ei ei,eiend; tie(ei,eiend) = edges(g._g); return std::make_pair( graph_traits<graph>::edge_iterator(true, 1, num_vertices(g._g)+1, ei, eiend, g._g, g._id, g._w, g._zero), graph_traits<graph>::edge_iterator(false, num_vertices(g._g)+1, num_vertices(g._g)+1, eiend, eiend, g._g, g._id, g._w, g._zero)); } template <class VertexAndEdgeListGraph, class VertexIDMap, class WeightMap, typename DistanceZero> typename detail::ssv_graph_help< VertexAndEdgeListGraph, VertexIDMap, WeightMap, DistanceZero>::num_edges_ret_type num_edges(const detail::single_source_vertex_graph< VertexAndEdgeListGraph, VertexIDMap, WeightMap, DistanceZero>& g) { return num_edges(g._g) + num_vertices(g._g); } template <class Vertex, class Weight> Weight get(const detail::ssv_edge_weight_map<Vertex,Weight>&, detail::ssv_graph_edge<Vertex,Weight>& e) { return e._w; } template <class Vertex, class Weight> struct property_traits<detail::ssv_edge_weight_map<Vertex,Weight> > { typedef readable_property_map_tag category; typedef Weight value_type; typedef detail::ssv_graph_edge<Vertex,Weight> key_type; typedef value_type reference; }; template <class VertexAndEdgeListGraph, class DistanceMatrix, class VertexID, class Weight, typename BinaryPredicate, typename BinaryFunction, typename Infinity, class DistanceZero> bool johnson_all_pairs_shortest_paths(VertexAndEdgeListGraph& g1, DistanceMatrix& D, VertexID id1, Weight w1, const BinaryPredicate& compare, const BinaryFunction& combine, const Infinity& inf, DistanceZero zero) { typedef detail::single_source_vertex_graph<VertexAndEdgeListGraph, VertexID,Weight,DistanceZero> graph_ssv; typedef typename property_traits<Weight>::value_type DT; graph_ssv gssv(g1, id1, w1, zero); std::vector<DT> d_vec(num_vertices(g1)+1, inf); std::vector<DT> h_vec(num_vertices(g1)+1); typedef typename std::vector<DT>::iterator iter_t; iterator_property_map<iter_t,identity_property_map,DT,DT&> d(d_vec.begin(), identity_property_map()); iterator_property_map<iter_t,identity_property_map,DT,DT&> h(h_vec.begin(), identity_property_map()); detail::ssv_edge_weight_map<graph_traits<graph_ssv>::vertex_descriptor, property_traits<Weight>::value_type> w2; dummy_property_map pred; bellman_visitor<> bvis; if (bellman_ford_shortest_paths (gssv, num_vertices(g1)+1, w2, pred, d, combine, compare, bvis)) { return true; } else return false; /*typedef graph_traits<VertexAndEdgeListGraph> Traits1; typedef typename property_traits<Weight>::value_type DT; function_requires< BasicMatrixConcept<DistanceMatrix, typename Traits1::vertices_size_type, DT> >(); typedef typename Traits1::directed_category DirCat; bool is_undirected = is_same<DirCat, undirected_tag>::value; typedef adjacency_list<vecS, vecS, directedS, property< vertex_distance_t, DT>, property< edge_weight_t, DT, property< edge_weight2_t, DT > > > Graph2; typedef graph_traits<Graph2> Traits2; Graph2 g2(num_vertices(g1) + 1); typename property_map<Graph2, edge_weight_t>::type w = get(edge_weight, g2); typename property_map<Graph2, edge_weight2_t>::type w_hat = get(edge_weight2, g2); typename property_map<Graph2, vertex_distance_t>::type d = get(vertex_distance, g2); typedef typename property_map<Graph2, vertex_index_t>::type VertexID2; VertexID2 id2 = get(vertex_index, g2); // Construct g2 where V[g2] = V[g1] U {s} // and E[g2] = E[g1] U {(s,v)| v in V[g1]} std::vector<typename Traits1::vertex_descriptor> verts1(num_vertices(g1) + 1); typename Traits2::vertex_descriptor s = *vertices(g2).first; { typename Traits1::vertex_iterator v, v_end; int i = 1; for (tie(v, v_end) = vertices(g1); v != v_end; ++v, ++i) { typename Traits2::edge_descriptor e; bool z; tie(e, z) = add_edge(s, get(id1, *v) + 1, g2); put(w, e, zero); verts1[i] = *v; } typename Traits1::edge_iterator e, e_end; for (tie(e, e_end) = edges(g1); e != e_end; ++e) { typename Traits2::edge_descriptor e2; bool z; tie(e2, z) = add_edge(get(id1, source(*e, g1)) + 1, get(id1, target(*e, g1)) + 1, g2); put(w, e2, get(w1, *e)); if (is_undirected) { tie(e2, z) = add_edge(get(id1, target(*e, g1)) + 1, get(id1, source(*e, g1)) + 1, g2); put(w, e2, get(w1, *e)); } } } typename Traits2::vertex_iterator v, v_end, u, u_end; typename Traits2::edge_iterator e, e_end; std::vector<DT> h_vec(num_vertices(g2)); typedef typename std::vector<DT>::iterator iter_t; iterator_property_map<iter_t,VertexID2,DT,DT&> h(h_vec.begin(), id2); for (tie(v, v_end) = vertices(g2); v != v_end; ++v) d[*v] = inf; put(d, s, zero); // Using the non-named parameter versions of bellman_ford and // dijkstra for portability reasons. dummy_property_map pred; bellman_visitor<> bvis; if (bellman_ford_shortest_paths (g2, num_vertices(g2), w, pred, d, combine, compare, bvis)) { for (tie(v, v_end) = vertices(g2); v != v_end; ++v) put(h, *v, get(d, *v)); // Reweight the edges to remove negatives for (tie(e, e_end) = edges(g2); e != e_end; ++e) { typename Traits2::vertex_descriptor a = source(*e, g2), b = target(*e, g2); put(w_hat, *e, get(w, *e) + get(h, a) - get(h, b)); } for (tie(u, u_end) = vertices(g2); u != u_end; ++u) { dijkstra_visitor<> dvis; dijkstra_shortest_paths (g2, *u, pred, d, w_hat, id2, compare, combine, inf, zero,dvis); for (tie(v, v_end) = vertices(g2); v != v_end; ++v) { if (*u != s && *v != s) { typename Traits1::vertex_descriptor u1, v1; u1 = verts1[id2[*u]]; v1 = verts1[id2[*v]]; D[id2[*u]-1][id2[*v]-1] = get(d, *v) + get(h, *v) - get(h, *u); } } } return true; } else return false;*/ } template <class VertexAndEdgeListGraph, class DistanceMatrix, class VertexID, class Weight, class DistanceZero> bool johnson_all_pairs_shortest_paths(VertexAndEdgeListGraph& g1, DistanceMatrix& D, VertexID id1, Weight w1, DistanceZero zero) { typedef typename property_traits<Weight>::value_type WT; return johnson_all_pairs_shortest_paths(g1, D, id1, w1, std::less<WT>(), closed_plus<WT>(), (std::numeric_limits<WT>::max)(), zero); } namespace detail { template <class VertexAndEdgeListGraph, class DistanceMatrix, class P, class T, class R, class Weight, class VertexID> bool johnson_dispatch(VertexAndEdgeListGraph& g, DistanceMatrix& D, const bgl_named_params<P, T, R>& params, Weight w, VertexID id) { typedef typename property_traits<Weight>::value_type WT; return johnson_all_pairs_shortest_paths (g, D, id, w, choose_param(get_param(params, distance_compare_t()), std::less<WT>()), choose_param(get_param(params, distance_combine_t()), closed_plus<WT>()), choose_param(get_param(params, distance_inf_t()), std::numeric_limits<WT>::max BOOST_PREVENT_MACRO_SUBSTITUTION()), choose_param(get_param(params, distance_zero_t()), WT()) ); } } // namespace detail template <class VertexAndEdgeListGraph, class DistanceMatrix, class P, class T, class R> bool johnson_all_pairs_shortest_paths (VertexAndEdgeListGraph& g, DistanceMatrix& D, const bgl_named_params<P, T, R>& params) { return detail::johnson_dispatch (g, D, params, choose_const_pmap(get_param(params, edge_weight), g, edge_weight), choose_const_pmap(get_param(params, vertex_index), g, vertex_index) ); } template <class VertexAndEdgeListGraph, class DistanceMatrix> bool johnson_all_pairs_shortest_paths (VertexAndEdgeListGraph& g, DistanceMatrix& D) { bgl_named_params<int,int> params(1); return detail::johnson_dispatch (g, D, params, get(edge_weight, g), get(vertex_index, g)); }} // namespace boost#endif // BOOST_GRAPH_JOHNSON_HPP
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -