📄 flowcalculation.m
字号:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.93 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 -0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 -1.22 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.22 0.48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14 -0.33 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0.14 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 -0.92 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.92 0.40 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22 -0.51 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.51 0.22 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 -0.53 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53 0.23 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 -0.54 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0.23 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.26 -0.59
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.59 0.26]; %节点支路关联矩阵
C=[-1.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E(2) F(2) -E(1) -F(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-F(2) E(2) F(1) -E(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 E(3) F(3) -E(2) -F(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -F(3) E(3) F(2) -E(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 E(4) F(4) -E(3) -F(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -F(4) E(4) F(3) -E(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 E(5) F(5) -E(4) -F(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -F(5) E(5) F(4) -E(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 E(6) F(6) -E(5) -F(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -F(6) E(6) F(5) -E(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 E(7) F(7) -E(6) -F(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -F(7) E(7) F(6) -E(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 E(8) F(8) -E(7) -F(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -F(8) E(8) F(7) -E(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 E(9) F(9) -E(8) -F(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -F(9) E(9) F(8) -E(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 E(10) F(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -E(2) -F(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -F(10) E(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F(2) -E(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 E(11) F(11) 0 0 0 0 0 0 0 0 0 0 0 0 -E(4) -F(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -F(11) E(11) 0 0 0 0 0 0 0 0 0 0 0 0 F(4) -E(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E(12) F(12) -E(11) -F(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -F(12) E(12) F(11) -E(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E(13) F(13) -E(12) -F(12) 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -F(13) E(13) F(12) -E(12) 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E(14) F(14) -E(13) -F(13) 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -F(14) E(14) F(13) -E(13) 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E(15) F(15) -E(14) -F(14) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -F(15) E(15) F(14) -E(14) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 E(16) F(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -E(6) -F(6) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -F(16) E(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F(6) -E(6) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E(17) F(17) -E(16) -F(16) 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -F(17) E(17) F(16) -E(16) 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E(18) F(18) -E(17) -F(17) 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -F(18) E(18) F(17) -E(17) 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 E(19) F(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -E(9) -F(9)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -F(19) E(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F(9) -E(9)];
Jacobi=B*Y*C ; %雅各比矩阵
epQPcorrection=epQP; %Q、P的修正量
Jacobizz=inv(Jacobi);
epEFcorrection=Jacobizz*epQPcorrection; %E、F的修正量
fprintf(flowoutput,'电压不平衡量(幅值在前,相角在后):\n');
for j=1:2*numPQ
fprintf(flowoutput,'%g\n',epEFcorrection(j));
end
epQP=epQPcorrection;
epEF=epEFcorrection;
k=k+1;
fprintf(flowoutput,'经过不平衡量修正后各节点的电压:%g\n',k);
for j=2:numPQ+1
E(j-1)=E(j-1)+epEF(2*(j-1)-1)*E(j-1);
F(j-1)=F(j-1)+epEF(2*(j-1));
fprintf(flowoutput,'%g\n',E(j-1));
fprintf(flowoutput,'%g\n',F(j-1));
end
fprintf(flowoutput,'\n');
end
clear epEFcorrection;
clear epQPcorrection;
clear Jacobizz;
end
Sb=(YBre(1,1)-i*YBim(1,1))*(E1-i*F1);
for j=2:numPQ+1
if YBre(1,j)==0&&YBim(1,j)==0
continue;
else
Sb=Sb+(YBre(1,j)-i*YBim(1,j))*(E(j-1)-i*F(j-1));
end
end
Sbalance=Sb*(E1+i*F1) %平衡节点功率
linepower=zeros(numPQ+1); %线路功率分布
for j=1:numPQ+1
for m=1:numPQ+1
if j~=m
if j==1
linepower(j,m)=(E1+i*F1)*((E1-i*F1)-(E(m-1)-i*F(m-1)))*(YBre(1,m)-i*YBim(1,m));
elseif m==1
linepower(j,m)=(E(j-1)+i*F(j-1))*((E(j-1)-i*F(j-1))-(E1-i*F1))*(YBre(j,1)-i*YBim(j,1));
else
linepower(j,m)=(E(j-1)+i*F(j-1))*((E(j-1)-i*F(j-1))-(E(m-1)-i*F(m-1)))*(YBre(j,m)-i*YBim(j,m));
end
end
end
end
linepower=linepower
lineloss=0;
for j=1:numPQ+1
for m=1:numPQ+1
lineloss=lineloss+linepower(j,m);
end
end
lineloss=lineloss %总功率损耗
%以上为初始潮流计算程序,下面程序将计算进行低压无功集中补偿时节点2到10的配电变二次侧对应的补偿容量
fprintf(flowoutput,'进行低压集中无功补偿时节点2到10的配电变二次侧对应的补偿容量\n');
Qccopy=zeros(1,9);
for j=2:10
if j~=3&&j~=5&&j~=7&&j~=9
Qccopy(1,j-1)=-(PQ(2*(j-1)-1))*(((PQ(2*(j-1)))/(PQ(2*(j-1)-1)))-0.329); %表示由原由功率因数提高到0.95时的无功缺额
else
if j==3
Qccopy(1,j-1)=-(PQ(3)+PQ(19))*(((PQ(4)+PQ(20))/(PQ(3)+PQ(19)))-0.329);
elseif j==5
Qccopy(1,j-1)=-(PQ(21)+PQ(23)+PQ(25)+PQ(27)+PQ(29))*(((PQ(22)+PQ(24)+PQ(26)+PQ(28)+PQ(30))/(PQ(21)+PQ(23)+PQ(25)+PQ(27)+PQ(29)))-0.329);
else
if j==7
Qccopy(1,j-1)=-(PQ(31)+PQ(33)+PQ(35))*(((PQ(32)+PQ(34)+PQ(36))/(PQ(31)+PQ(33)+PQ(35)))-0.329);
else
Qccopy(1,j-1)=-(PQ(15)+PQ(37))*(((PQ(16)+PQ(38))/(PQ(15)+PQ(38)))-0.329);
end
end
end
end
fprintf(flowoutput,'%g\n',Qccopy);
fprintf(flowoutput,'\n');
%下面程序将计算进行线路补偿时各节点的负荷功率阻抗矩用于确定馈线上的最优补偿点
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -