⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lab9_literki.m

📁 Hopfield network with matlab.
💻 M
字号:
clear all
close all
clc

% A=[ 1  1 -1 -1  1  1 
%     1 -1  1  1 -1  1 
%    -1  1  1  1  1 -1 
%    -1  1  1  1  1 -1 
%    -1 -1 -1 -1 -1 -1  
%    -1  1  1  1  1 -1 
%    -1  1  1  1  1 -1 ];
% 
% B=[-1 -1 -1  1  1  1 
%    -1  1  1 -1  1  1 
%    -1  1  1 -1  1  1 
%    -1 -1 -1  1  1  1 
%    -1  1  1 -1  1  1  
%    -1  1  1 -1  1  1 
%    -1 -1 -1  1  1  1 ];
% 
% C=[-1 -1 -1 -1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1  
%    -1  1  1  1  1  1 
%    -1 -1 -1 -1  1  1 ];
%     
% D=[-1 -1 -1  1  1  1 
%    -1  1  1 -1  1  1 
%    -1  1  1 -1  1  1 
%    -1  1  1 -1  1  1 
%    -1  1  1 -1  1  1  
%    -1  1  1 -1  1  1 
%    -1 -1 -1  1  1  1 ];
% 
% E=[-1 -1 -1 -1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1 -1 -1 -1  1  1 
%    -1  1  1  1  1  1  
%    -1  1  1  1  1  1 
%    -1 -1 -1 -1  1  1 ];
% 
% F=[-1 -1 -1 -1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1 -1 -1  1  1  1 
%    -1  1  1  1  1  1  
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 ];
% 
% G=[-1 -1 -1 -1 -1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1  1 -1 -1 -1  1 
%    -1  1  1  1 -1  1  
%    -1  1  1  1 -1  1 
%    -1 -1 -1 -1 -1  1 ];
% 
% H=[-1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1 -1 -1 -1 -1  1 
%    -1  1  1  1 -1  1  
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 ];
% 
% I=[ 1  1 -1  1  1  1 
%     1  1 -1  1  1  1 
%     1  1 -1  1  1  1 
%     1  1 -1  1  1  1 
%     1  1 -1  1  1  1  
%     1  1 -1  1  1  1 
%     1  1 -1  1  1  1 ];
% 
% J=[ 1  1  1 -1 -1 -1 
%     1  1  1  1  1 -1 
%     1  1  1  1  1 -1 
%     1  1  1  1  1 -1 
%     1  1 -1  1  1 -1  
%     1  1 -1  1  1 -1 
%     1  1  1 -1 -1  1 ];
% 
% K=[-1  1  1  1 -1  1 
%    -1  1  1 -1  1  1 
%    -1  1 -1  1  1  1 
%    -1 -1  1  1  1  1 
%    -1  1 -1  1  1  1  
%    -1  1  1 -1  1  1 
%    -1  1  1  1 -1  1 ];
% 
% L=[-1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1  
%    -1  1  1  1  1  1 
%    -1 -1 -1 -1  1  1 ];
% 
% M=[-1 -1  1 -1 -1  1 
%    -1  1 -1  1 -1  1 
%    -1  1 -1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1  
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 ];
% 
% N=[ 1  1  1  1  1  1 
%    -1  1  1  1 -1  1 
%    -1 -1  1  1 -1  1 
%    -1  1 -1  1 -1  1 
%    -1  1 -1  1 -1  1  
%    -1  1  1 -1 -1  1 
%    -1  1  1  1 -1  1 ];
% 
% O=[-1 -1 -1 -1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1  
%    -1  1  1  1 -1  1 
%    -1 -1 -1 -1 -1  1 ];
% 
% P=[-1 -1 -1 -1  1  1 
%    -1  1  1 -1  1  1 
%    -1  1  1 -1  1  1 
%    -1 -1 -1 -1  1  1 
%    -1  1  1  1  1  1  
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 ];
% 
% R=[-1 -1 -1 -1  1  1 
%    -1  1  1 -1  1  1 
%    -1  1  1 -1  1  1 
%    -1 -1 -1 -1  1  1 
%    -1 -1  1  1  1  1  
%    -1  1 -1  1  1  1 
%    -1  1  1 -1  1  1 ];
% 
% S=[-1 -1 -1 -1  1  1 
%    -1  1  1  1  1  1 
%    -1  1  1  1  1  1 
%    -1 -1 -1 -1  1  1 
%     1  1  1 -1  1  1  
%     1  1  1 -1  1  1 
%    -1 -1 -1 -1  1  1 ];
% 
% T=[ 1 -1 -1 -1 -1 -1 
%     1  1  1 -1  1  1 
%     1  1  1 -1  1  1 
%     1  1  1 -1  1  1 
%     1  1  1 -1  1  1  
%     1  1  1 -1  1  1 
%     1  1  1 -1  1  1 ];
% 
% U=[-1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1  
%    -1  1  1  1 -1  1 
%    -1 -1 -1 -1 -1  1 ];
% 
% W=[-1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1  1  1 -1  1 
%    -1  1 -1  1 -1  1  
%    -1  1 -1  1 -1  1 
%    -1 -1  1 -1 -1  1 ];
% 
% Z=[-1 -1 -1 -1 -1  1 
%     1  1  1  1 -1  1 
%     1  1  1 -1  1  1 
%     1  1 -1  1  1  1 
%     1  1 -1  1  1  1  
%     1 -1  1  1  1  1 
%    -1 -1 -1 -1 -1  1 ];
% 
% Y=[ 1 -1  1  1  1 -1 
%     1  1 -1  1 -1  1 
%     1  1 -1  1 -1  1 
%     1  1  1 -1  1  1 
%     1  1  1 -1  1  1  
%     1  1  1 -1  1  1 
%     1  1  1 -1  1  1 ];

A=[ 1 -1 -1 -1  1 
   -1  1  1  1 -1  
   -1 -1 -1 -1 -1   
   -1  1  1  1 -1    
   -1  1  1  1 -1];

B=[-1 -1 -1  1  1 
   -1  1  1 -1  1  
   -1 -1 -1  1  1   
   -1  1  1 -1  1    
   -1 -1 -1  1  1];

C=[-1 -1 -1  1  1 
   -1  1  1  1  1  
   -1  1  1  1  1   
   -1  1  1  1  1    
   -1 -1 -1  1  1];

D=[-1 -1  1  1  1 
   -1  1 -1  1  1  
   -1  1 -1  1  1   
   -1  1 -1  1  1    
   -1 -1  1  1  1];

E=[-1 -1 -1  1  1 
   -1  1  1  1  1  
   -1 -1 -1  1  1   
   -1  1  1  1  1    
   -1 -1 -1  1  1];

F=[-1 -1 -1 -1  1 
   -1  1  1  1  1  
   -1 -1 -1  1  1   
   -1  1  1  1  1    
   -1  1  1  1  1];

G=[-1 -1 -1 -1  1 
   -1  1  1  1  1  
   -1  1 -1 -1  1   
   -1  1  1 -1  1    
   -1 -1 -1 -1  1];

H=[-1  1  1 -1  1 
   -1  1  1 -1  1  
   -1 -1 -1 -1  1   
   -1  1  1 -1  1    
   -1  1  1 -1  1];

I=[ 1  1  1  1  1 
    1  1 -1  1  1  
    1  1 -1  1  1   
    1  1 -1  1  1    
    1  1 -1  1  1];

J=[ 1  1 -1 -1 -1 
    1  1  1  1 -1  
    1  1 -1  1 -1   
    1  1 -1  1 -1    
    1  1  1 -1 -1];

K=[-1  1  1 -1  1 
   -1  1 -1  1  1  
   -1 -1  1  1  1   
   -1  1 -1  1  1    
   -1  1  1 -1  1];

L=[-1  1  1  1  1 
   -1  1  1  1  1  
   -1  1  1  1  1   
   -1  1  1  1  1    
   -1 -1 -1 -1  1];

M=[-1 -1  1 -1 -1 
   -1  1 -1  1 -1  
   -1  1  1  1 -1   
   -1  1  1  1 -1    
   -1  1  1  1 -1];

N=[-1  1  1  1 -1 
   -1 -1  1  1 -1  
   -1  1 -1  1 -1   
   -1  1  1 -1 -1    
   -1  1  1  1 -1];

O=[-1 -1 -1 -1  1 
   -1  1  1 -1  1  
   -1  1  1 -1  1   
   -1  1  1 -1  1    
   -1 -1 -1 -1  1];

P=[-1 -1 -1  1  1 
   -1  1 -1  1  1  
   -1 -1 -1  1  1   
   -1  1  1  1  1    
   -1  1  1  1  1];

R=[-1 -1 -1 -1  1 
   -1  1  1 -1  1  
   -1 -1 -1 -1  1   
   -1  1 -1  1  1    
   -1  1  1 -1  1];

S=[-1 -1 -1 -1  1 
   -1  1  1  1  1  
   -1 -1 -1 -1  1   
    1  1  1 -1  1    
   -1 -1 -1 -1  1];

T=[-1 -1 -1 -1 -1 
    1  1 -1  1  1  
    1  1 -1  1  1   
    1  1 -1  1  1    
    1  1 -1  1  1];

U=[-1  1  1 -1  1 
   -1  1  1 -1  1  
   -1  1  1 -1  1   
   -1  1  1 -1  1    
   -1 -1 -1 -1  1];

W=[-1  1  1  1 -1 
   -1  1  1  1 -1  
   -1  1  1  1 -1   
   -1  1 -1  1 -1    
   -1 -1  1 -1 -1]; 

Z=[-1 -1 -1 -1 -1 
    1  1  1 -1  1  
    1  1 -1  1  1  
    1 -1  1  1  1   
   -1 -1 -1 -1 -1]; 

Y=[-1  1  1  1 -1  
    1 -1  1 -1  1   
    1  1 -1  1  1  
    1  1 -1  1  1  
    1  1 -1  1  1];      
figure    
imshow(reshape(T,5,5),'InitialMagnification','fit')
    

[m,n]=size(A);
%t=[(reshape(A,1,m*n))', (reshape(B,1,m*n))', (reshape(C,1,m*n))', (reshape(D,1,m*n))' ,(reshape(E,1,m*n))' ,(reshape(F,1,m*n))',(reshape(G,1,m*n))',(reshape(H,1,m*n))',(reshape(I,1,m*n))',(reshape(J,1,m*n))',(reshape(K,1,m*n))',(reshape(L,1,m*n))',(reshape(M,1,m*n))',(reshape(N,1,m*n))',(reshape(O,1,m*n))',(reshape(P,1,m*n))',(reshape(R,1,m*n))',(reshape(S,1,m*n))',(reshape(T,1,m*n))',(reshape(U,1,m*n))',(reshape(W,1,m*n))',(reshape(Z,1,m*n))',(reshape(Y,1,m*n))'];

t=[(reshape(A,1,m*n))', (reshape(B,1,m*n))', (reshape(C,1,m*n))', (reshape(D,1,m*n))' ,(reshape(E,1,m*n))' ,(reshape(F,1,m*n))',(reshape(G,1,m*n))',(reshape(H,1,m*n))',(reshape(I,1,m*n))',(reshape(J,1,m*n))',(reshape(K,1,m*n))'];
net=newhop(t);

% Ai=[1 1 1  1  1  1 
%    -1  1  1 -1  1  1 
%    -1  1  1 -1  1  1 
%    -1 -1 -1  1  1  1 
%    -1  1  1 -1  1  1  
%    -1  1  1 -1  1  1 
%    -1 -1 -1  1  1  1 ];

% Ai=[1 1 1  1  1  1 
%    -1  1  1 -1  1  1 
%    1  1  1 -1  1  1 
%     1 -1 -1  1  1  1 
%    -1  1  1  1  1  1  
%    1  1  1  1  1  1 
%    -1 -1 -1  1  1  1 ];

% Ai=[1  1  1  1 -1  1 
%    -1  1  1 -1  1  1 
%    -1  1  1  1  1  1 
%     1  1  1  1  1  1 
%     1  1  1  1  1  1  
%    -1  1  1 -1  1  1 
%     1  1  1  1  1  1 ];


Ai=[-1  1  1 -1  1 
   -1  1  1  1  1  
    1 -1  1  1  1   
   -1  1 -1  1  1    
   -1  1  1  1  1];

% B#1
% Ai=[-1 -1  1  1  1 
%     -1  1  1 -1  1  
%     -1 -1  1  1  1   
%     -1  1  1 -1  1    
%     -1 -1 -1  1  1];

% B#2
% Ai=[ 1 -1  1  1  1 
%     -1  1  1 -1  1  
%     -1 -1  1  1  1   
%     -1  1  1 -1  1    
%      1 -1 -1  1  1];


Ai=reshape(Ai,m*n,1);
[Y,Pf,Af] = sim(net,{1,180},{},{Ai});
imshow(reshape(Ai,5,5),'InitialMagnification','fit')
pause(0.5)

imshow(reshape(Y{1,1},5,5),'InitialMagnification','fit')
pause(0.1)

for i=2:1:180
    disp('iteracja:')
    i-1
    imshow(reshape(Y{1,i},5,5),'InitialMagnification','fit')
   pause
%     if Y{1,i}==Y{1,i-1}
%         disp ('Rozpoznawanie zakonczone')
%         figure
%         imshow(reshape(Af{1},5,5),'InitialMagnification','fit')
%         title ('Wynik')
%         break
%     end
end

figure
imshow(reshape(Af{1},5,5),'InitialMagnification','fit')
title ('Wynik')

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -