⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 todo

📁 数学公式库--非常不错 The GNU Scientific Library (GSL) is a collection of routines for numerical computing. T
💻
字号:
* Could probably return immediately for exact zeros in 3j,6j,9jfunctions.  Easiest to implement for 3j.  Note from Serge Winitzki <serge@cosmos.phy.tufts.edu>:  The package "matpack" (www.matpack.de) includes many special functions,   also the 3j symbols. They refer to some quite complicated numerical   methods using recursion relations to get the right answers for large   momenta, and to 1975-1976 papers by Schulten and Gordon for the   description of the algorithms. The papers can be downloaded for free at  http://www.ks.uiuc.edu/Publications/Papers/   http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU76B  http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU75A  http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU75* add Fresnel Integrals to specfunc.  See TOMS 723 + 2 subsequenterrata.* make mode variables consistent in specfunc -- some seem to beunnecessary from performance point of view since the speed differenceis negligible.* From: "Alexander Babansky" <babansky@mail.ru>To: "Brian Gough" <bjg@network-theory.co.uk>Subject: Re: gsl-1.2Date: Sun, 3 Nov 2002 14:15:15 -0500Hi Brian,May I suggest you to add another function to gsl-1.2 ?It's a modified Ei(x) function:Em(x)=exp(-x)*Ei(x);As u  might know, Ei(x) raises as e^x on the negative interval.Therefore, Ei(100) is very very large.But Ei(100)*exp(-100) = 0.010;Unfortunately, if u try x=800 u'll get overflow in Ei(800).but Ei(800)*exp(-800) should be around 0.0001;Modified function Em(x) is used in cos, sin integrals such as:int_0^\infinity dx sin(bx)/(x^2+z^2)=(1/2z)*(Em(bz)-Em(-bz));int_0^\infinity dx x cos(bx)/(x^2+z^2)=(1/2)*(Em(bz)+Em(-bz));One of possible ways to add it to the library is:Em(x) = - PV int_0^\infinity e^(-t)/(t+x) dtSincerely,AlexDONE: Wed Nov  6 13:06:42 MST 2002 [GJ]----------------------------------------------------------------------The following should be finished before a 1.0 level release.* Implement the conicalP_sph_reg() functions.  DONE: Fri Nov  6 23:33:53 MST 1998 [GJ]* Irregular (Q) Legendre functions, at least  the integer order ones. More general cases  can probably wait.  DONE: Sat Nov  7 15:47:35 MST 1998 [GJ]* Make hyperg_1F1() work right.  This is the last remaining source of test failures.  The problem is with an unstable recursion in certain cases.  Look for the recursion with the variable named "start_pair";  this is stupid hack to keep track of when the recursion  result is going the wrong way for awhile by remembering the  minimum value. An error estimate is amde from that. But it  is just a hack. Somethign must be done abou that case.* Clean-up Coulomb wave functions. This does not  mean completing a fully controlled low-energy  evaluation, which is a larger project.  DONE: Sun May 16 13:49:47 MDT 1999 [GJ]* Clean-up the Fermi-Dirac code. The full Fermi-Dirac  functions can probably wait until a later release,  but we should have at least the common j = integer and  j = 1/2-integer cases for the 1.0 release. These  are not too hard.  DONE: Sat Nov  7 19:46:27 MST 1998 [GJ]* Go over the tests and make sure nothing is left out.* Sanitize all the error-checking, error-estimation,  algorithm tuning, etc.* Fill out our scorecard, working from Lozier's  "Software Needs in Special Functions" paper.* Final Seal of Approval  This section has itself gone through several  revisions (sigh), proving that the notion of  done-ness is ill-defined. So it is worth  stating the criteria for done-ness explicitly:  o interfaces stabilized  o error-estimation in place  o all deprecated constructs removed  o passes tests  - airy.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - airy_der.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - airy_zero.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - atanint.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - bessel.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_I0.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - bessel_I1.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - bessel_In.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_Inu.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_J0.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:       - bessel_J1.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:       - bessel_Jn.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_Jnu.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_K0.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - bessel_K1.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - bessel_Kn.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - bessel_Knu.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_Y0.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:       - bessel_Y1.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:       - bessel_Yn.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_Ynu.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_amp_phase.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_i.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_j.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_k.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - bessel_olver.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_sequence.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_temme.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_y.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - bessel_zero.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - beta.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - chebyshev.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - clausen.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - coulomb.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - coulomb_bound.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - coupling.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - dawson.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - debye.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - dilog.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - elementary.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - ellint.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - elljac.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - erfc.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - exp.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - expint.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - expint3.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - fermi_dirac.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - gamma.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - gamma_inc.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - gegenbauer.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - hyperg.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - hyperg_0F1.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - hyperg_1F1.c  - hyperg_2F0.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - hyperg_2F1.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - hyperg_U.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - laguerre.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - legendre_H3d.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - legendre_Qn.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - legendre_con.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - legendre_poly.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - log.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - poch.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - poly.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - pow_int.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - psi.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - result.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - shint.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - sinint.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - synchrotron.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - transport.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:   - trig.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:  - zeta.c    INTERFACES:    ERRORESTIM:    DEPRECATED:    PASSTESTS:----------------------------------------------------------------------The following are important but probably willnot see completion before a 1.0 level release.* Incomplete Fermi-Dirac functions.  Other Fermi-Dirac functions, including the  generic 1/2-integer case, which was not done.* Implement the low-energy regime for the Coulomb  wave functions. This is fairly well understood in  the recent literature but will require some  detailed work. Specifically this means creating  a drop-in replacement for coulomb_jwkb() which  is controlled and extensible.* General Legendre functions (at least on the cut).  This subsumes the toroidal functions, so we need not  consider those separately. SLATEC code exists (originally  due to Olver+Smith).* Characterize the algorithms. A significant fraction of  the code is home-grown and it should be reviewed by  other parties.----------------------------------------------------------------------The following are extra features which need notbe implemented for a version 1.0 release.* Spheroidal wave functions.* Mathieu functions.* Weierstrass elliptic functions.----------------------------------------------------------------------Improve accuracy of ERFNNTP-Posting-Date: Thu, 11 Sep 2003 07:41:42 -0500From: "George Marsaglia" <geo@stat.fsu.edu>Newsgroups: comp.lang.cReferences: <t4J7b.18514$98.4310@nwrddc03.gnilink.net>Subject: Re: When (32-bit) double precision isn't precise enoughDate: Thu, 11 Sep 2003 08:41:40 -0400X-Priority: 3X-MSMail-Priority: NormalX-Newsreader: Microsoft Outlook Express 6.00.2800.1158X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1165Message-ID: <wq2dnQBikNwb8P2iU-KYvg@comcast.com>Lines: 265NNTP-Posting-Host: 68.35.247.101X-Trace: sv3-4YY+jkhhdeQvGKAREa99vDBFHJoKVqVBdUTSuRxA71OwlgxX0uUFnKYs54FlnUs0Xb6BRngKigkd75d!tKin8l8rAQKylaP+4vzTI3AO33bivOw1lKDZUUtXe4lUMW1qn+goUp/Pfksstg==X-Complaints-To: abuse@comcast.netX-DMCA-Complaints-To: dmca@comcast.netX-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headersX-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properlyX-Postfilter: 1.1Why most of those who deal with the normal integral in probabilitytheory are still stuck with the historical baggage of the error functionis a puzzle to me, as is the poor quality of the results one gets fromstandard library implementations of erf().  (One of the most common is based on ALGORITHM AS66, APPL. STATIST.(1973) Vol.22, .424 by HILL, which gives only 6-8 digit accuracy).Here is a listing of my method:/*Marsaglia Complementary Normal Distribution Function   cPhi(x) = integral from x to infinity of exp(-.5*t^2)/sqrt(2*pi), x<15 15-digit accuracy for x<15, returns 0 for x>15.#include <math.h>*/double cPhi(double x){long double v[]={0.,.65567954241879847154L,.42136922928805447322L,.30459029871010329573L,.23665238291356067062L,.19280810471531576488L,.16237766089686746182L,.14010418345305024160L,.12313196325793229628L,.10978728257830829123L,.99028596471731921395e-1L,.90175675501064682280e-1L,.82766286501369177252e-1L,.76475761016248502993e-1L,.71069580538852107091e-1L,.66374235823250173591e-1L};long double h,a,b,z,t,sum,pwr;int i,j;      if(x>15.) return (0.);      if(x<-15.) return (1.);        j=fabs(x)+1.;        z=j;        h=fabs(x)-z;        a=v[j];        b=z*a-1.;        pwr=1.;        sum=a+h*b;           for(i=2;i<60;i+=2){           a=(a+z*b)/i;           b=(b+z*a)/(i+1);           pwr=pwr*h*h;           t=sum;           sum=sum+pwr*(a+h*b);           if(sum==t) break; }      sum=sum*exp(-.5*x*x-.91893853320467274178L);      if(x<0.) sum=1.-sum;      return ((double) sum);                      }*/ end of listing*/The method is based on defining phi(x)=exp(-x^2)/sqrt(2pi) and       R(x)=cPhi(x)/phi(x).The function R(x) is well-behaved  and terms of its Taylorseries are readily obtained by a two-term recursion.   With an accuraterepresentation of R(x) at ,say, x=0,1,2,...,15, a simple evaluationof the Taylor series at intermediate points provides up to15 digits of accuracy.An article describing the method will be in the new version ofmy Diehard CDROM.   A new version of the Diehard testsof randomness (but not yet the new DVDROM) is at   http://www.csis.hku.hk/~diehard/ George Marsaglia

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -