⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multistartoptimisationalgorithm.java

📁 粒子群算法的JAVA 程序
💻 JAVA
字号:
/* * MultistartOptimisationAlgorithm.java * * Created on January 26, 2003, 3:06 PM * * * Copyright (C) 2003 - Edwin S. Peer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA  *  * * This class implements a generalised multistart optimisation algorithm. The  * original Multistart PSO is due to F. van den Bergh, reference: *          F. van den Bergh, "An Analysis of Particle Swarm Optimizers," *          PhD thesis, Department of Computer Science,  *          University of Pretoria, South Africa, 2002. */package net.sourceforge.cilib.Algorithm;import net.sourceforge.cilib.Indicator.*;import net.sourceforge.cilib.Problem.*;/** * * @author  espeer */public class MultistartOptimisationAlgorithm extends Algorithm implements OptimisationAlgorithm, ParticipatingAlgorithm {        /** Creates a new instance of MultistartOptimisationAlgorithm */    public MultistartOptimisationAlgorithm() {        singleIteration = new SingleIteration();        problem = null;    }        public void setOptimisationAlgorithm(OptimisationAlgorithm algorithm) {        this.algorithm = (Algorithm) algorithm;        this.algorithm.addProgressIndicator(singleIteration);        optimisationAlgorithm = algorithm;    }        public int getFitnessEvaluations() {        return fitnessEvaluations;    }        public OptimisationProblem getOptimisationProblem() {        return optimisationAlgorithm.getOptimisationProblem();    }        public double[] getSolution() {        return solution;    }        public double getSolutionFitness() {        return fitness;    }        public void setOptimisationProblem(OptimisationProblem problem) {        this.problem = problem;    }        public double[] getContribution() {        return ((ParticipatingAlgorithm) algorithm).getContribution();    }        public double getContributionFitness() {        return ((ParticipatingAlgorithm) algorithm).getContributionFitness();    }        public void updateContributionFitness(double fitness) {        ((ParticipatingAlgorithm) algorithm).updateContributionFitness(fitness);    }        public void addRestartProgressIndicator(ProgressIndicator indicator) {        algorithm.addProgressIndicator(indicator);    }        public void removeRestartProgressIndicator(ProgressIndicator indicator) {        algorithm.removeProgressIndicator(indicator);    }        public void initialise() {        super.initialise();        if (problem != null) {            optimisationAlgorithm.setOptimisationProblem(problem);        }        previousFitnessEvaluations = 0;        fitnessEvaluations = 0;        fitness = - Double.MAX_VALUE;        solution = new double[getOptimisationProblem().getDimension()];        restarts = 0;        algorithm.initialise();    }        public void performIteration() {         algorithm.run();        singleIteration.reset();        fitnessEvaluations = previousFitnessEvaluations + ((OptimisationAlgorithm) algorithm).getFitnessEvaluations();               if (optimisationAlgorithm.getSolutionFitness() > fitness) {            fitness = optimisationAlgorithm.getSolutionFitness();            for (int i = 0; i < getOptimisationProblem().getDimension(); ++i) {                solution[i] = optimisationAlgorithm.getSolution()[i];            }        }               if (algorithm.getPercentageComplete() >= 100) {            previousFitnessEvaluations = fitnessEvaluations;            algorithm.initialise();            ++restarts;        }     }        public int getRestarts() {        return restarts;    }        private Algorithm algorithm;    private OptimisationAlgorithm optimisationAlgorithm;    private int fitnessEvaluations;    private int previousFitnessEvaluations;    private int restarts;    private SingleIteration singleIteration;    private OptimisationProblem problem;    private double[] solution;    private double fitness;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -