⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 init.h

📁 一个人工神经网络的程序。 文档等说明参见http://aureservoir.sourceforge.net/
💻 H
字号:
/***************************************************************************//*! *  \file   init.h * *  \brief  initialization algorithms for Echo State Networks * *  \author Georg Holzmann, grh _at_ mur _dot_ at *  \date   Sept 2007 * *   ::::_aureservoir_:::: *   C++ library for analog reservoir computing neural networks * *   This library is free software; you can redistribute it and/or *   modify it under the terms of the GNU Lesser General Public *   License as published by the Free Software Foundation; either *   version 2.1 of the License, or (at your option) any later version. * ***************************************************************************/#ifndef AURESERVOIR_INIT_H__#define AURESERVOIR_INIT_H__#include "utilities.h"namespace aureservoir{/*! * \enum InitAlgorithm * * all possible initialization algorithms */enum InitAlgorithm{  INIT_STD      //!< standard initialization, \sa class InitStd};/*! * \enum InitParameter * * possible parameters of the initialization algorithms * \note not every algorithm must use all of them ! */enum InitParameter{  CONNECTIVITY,     //!< connectivity of the reservoir weight matrix  ALPHA,            //!< spectral radius of the reservoir weight matrix  IN_CONNECTIVITY,  //!< connectivity of the input weight matrix  IN_SCALE,         //!< scale input weight matrix random vaules  IN_SHIFT,         //!< shift input weight matrix random vaules  FB_CONNECTIVITY,  //!< connectivity of the feedback weight matrix  FB_SCALE,         //!< scale feedback weight matrix random vaules  FB_SHIFT,         //!< shift feedback weight matrix random vaules  LEAKING_RATE,     //!< leaking rate for Leaky Integrator ESNs  TIKHONOV_FACTOR,  //!< regularization factor for TrainRidgeReg  DS_USE_CROSSCORR, //!< use simple cross-correlation for delay calculation  DS_USE_GCC,       //!< use generalized cross-correlation for delay calculation  DS_MAXDELAY,      //!< maximum delay for delay&sum readout  IP_LEARNRATE,     //!< learnrate for Gaussian-IP reservoir adaptation  IP_MEAN,          //!< desired mean for Gaussian-IP reservoir adaptation  IP_VAR            //!< desired variance for Gaussian-IP reservoir adaptation};template <typename T> class ESN;/*! * \class InitBase * * \brief abstract base class for initialization algorithms * * This class is an abstract base class for all different kinds of * initialization algorithms. * The idea behind this system is that the algorithms can be exchanged * at runtime (strategy pattern). * * Simply derive from this class if you want to add a new init algorithm. */template <typename T>class InitBase{ public:  /// Constructor  InitBase(ESN<T> *esn) { esn_=esn; }  /// Destructor  virtual ~InitBase() {}  /// initialization algorithm  virtual void init() throw(AUExcept) = 0; protected:  /// checks if the init parameters have the right values  virtual void checkInitParams() throw(AUExcept);  /// allocates working data for algorithms  virtual void allocateWorkData();  /// reference to the data of the network  ESN<T> *esn_;};/*! * \class InitStd * * \brief standard initialization as described in Jaeger's initial paper * * Initializes all matrices with normal distributed random values in * a specific connectivity. * Then it scales the weight matrix with the help of the largest * eigenvalue to the spectral radius alpha. */template <typename T>class InitStd : public InitBase<T>{  using InitBase<T>::esn_; public:  InitStd(ESN<T> *esn) : InitBase<T>(esn) {}  virtual ~InitStd() {}  /// the algorithm  virtual void init() throw(AUExcept);};} // end of namespace aureservoir#endif // AURESERVOIR_INIT_H__

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -