⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 esn_example.cpp

📁 一个人工神经网络的程序。 文档等说明参见http://aureservoir.sourceforge.net/
💻 CPP
字号:
/***************************************************************************//*! *  \file   esn_example.cpp * *  \brief  example usage of the ESN class * *  \author Georg Holzmann, grh _at_ mur _dot_ at *  \date   Sept 2007 * *   ::::_aureservoir_:::: *   C++ library for analog reservoir computing neural networks * *   This library is free software; you can redistribute it and/or *   modify it under the terms of the GNU Lesser General Public *   License as published by the Free Software Foundation; either *   version 2.1 of the License, or (at your option) any later version. * ***************************************************************************/#include "aureservoir/aureservoir.h"#define TYPE double#include <iostream>#include <complex>using namespace aureservoir;using namespace std;int main(int argc, char *argv[]){  ESN< TYPE > net;  try  {    cout << "## INITIALIZATION ##\n";    int train_size = 50;    int ins = 3;    int outs = 2;    net.setSize(15);    net.setInputs(ins);    net.setOutputs(outs);    net.setInitParam(CONNECTIVITY, 0.8);    net.setInitParam(IN_CONNECTIVITY, 0.6);    net.setInitParam(FB_CONNECTIVITY, 0.4);    net.init();    // print current net parameters    net.post();    cout << endl << "input weights W_in: " << net.getWin();    cout << endl << "feedback weights W_back: " << net.getWback();//     cout << endl << "reservoir weight matrix W: " << net.getW() << endl;    cout << "\n## TRAINING ##\n";    ESN<TYPE>::DEMatrix in(ins,train_size), out(outs,train_size);    for(int i=1; i<=train_size; ++i)    {      for(int j=1; j<=ins; ++j)        in(j,i) = Rand<TYPE>::uniform();      for(int j=1; j<=outs; ++j)        out(j,i) = Rand<TYPE>::uniform();    }    net.train(in, out, 20);    cout << "\ntrained output weights W_out: " << net.getWout() << endl;    cout << "## SIMULATION ##\n";    int run_size = 10;    ESN<TYPE>::DEMatrix indata(ins,run_size), result(outs,run_size);    for(int i=1; i<=run_size; ++i)    {      for(int j=1; j<=ins; ++j)        indata(j,i) = Rand<>::uniform();    }    net.simulate( indata, result );    cout << endl << "simulation results: " << result << endl;  }  catch(AUExcept e)  { cout << "Exception: " << e.what() << endl; }  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -