📄 blobtrackingmsfgs.cpp
字号:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cvaux.h"
#define SCALE_BASE 1.1
#define SCALE_RANGE 2
#define SCALE_NUM (2*SCALE_RANGE+1)
typedef float DefHistType;
#define DefHistTypeMat CV_32F
#define HIST_INDEX(_pData) (((_pData)[0]>>m_ByteShift) + (((_pData)[1]>>(m_ByteShift))<<m_BinBit)+((pImgData[2]>>m_ByteShift)<<(m_BinBit*2)))
void calcKernelEpanechnikov(CvMat* pK)
{/* allocate kernel for histogramm creation */
int x,y;
int w = pK->width;
int h = pK->height;
float x0 = 0.5f*(w-1);
float y0 = 0.5f*(h-1);
for(y=0;y<h;++y)for(x=0;x<w;++x)
{
// float r2 = ((x-x0)*(x-x0)/(x0*x0)+(y-y0)*(y-y0)/(y0*y0));
float r2 = ((x-x0)*(x-x0)+(y-y0)*(y-y0))/((x0*x0)+(y0*y0));
CV_MAT_ELEM(pK[0],DefHistType, y, x) = (DefHistType)((r2<1)?(1-r2):0);
}
}/* allocate kernel for histogramm creation */
class CvBlobTrackerOneMSFGS:public CvBlobTrackerOne
{
private:
/* parameters */
float m_FGWeight;
float m_Alpha;
CvSize m_ObjSize;
CvMat* m_KernelHistModel;
CvMat* m_KernelHistCandidate;
CvSize m_KernelMeanShiftSize;
CvMat* m_KernelMeanShiftK[SCALE_NUM];
CvMat* m_KernelMeanShiftG[SCALE_NUM];
CvMat* m_Weights;
int m_BinBit;
int m_ByteShift;
int m_BinNum;
int m_Dim;
int m_BinNumTotal;
CvMat* m_HistModel;
float m_HistModelVolume;
CvMat* m_HistCandidate;
float m_HistCandidateVolume;
CvMat* m_HistTemp;
CvBlob m_Blob;
void ReAllocHist(int Dim, int BinBit)
{
m_BinBit = BinBit;
m_ByteShift = 8-BinBit;
m_Dim = Dim;
m_BinNum = (1<<BinBit);
m_BinNumTotal = cvRound(pow((double)m_BinNum,(double)m_Dim));
if(m_HistModel) cvReleaseMat(&m_HistModel);
if(m_HistCandidate) cvReleaseMat(&m_HistCandidate);
if(m_HistTemp) cvReleaseMat(&m_HistTemp);
m_HistCandidate = cvCreateMat(1, m_BinNumTotal, DefHistTypeMat);
m_HistModel = cvCreateMat(1, m_BinNumTotal, DefHistTypeMat);
m_HistTemp = cvCreateMat(1, m_BinNumTotal, DefHistTypeMat);
cvZero(m_HistCandidate);
cvZero(m_HistModel);
m_HistModelVolume = 0.0f;
m_HistCandidateVolume = 0.0f;
}
void ReAllocKernel(int w, int h, float sigma=0.4)
{
double ScaleToObj = sigma*1.39;
int kernel_width = cvRound(w/ScaleToObj);
int kernel_height = cvRound(h/ScaleToObj);
int x,y,s;
assert(w>0);
assert(h>0);
m_ObjSize = cvSize(w,h);
m_KernelMeanShiftSize = cvSize(kernel_width,kernel_height);
/* create kernels for histogramm calculation */
if(m_KernelHistModel) cvReleaseMat(&m_KernelHistModel);
m_KernelHistModel = cvCreateMat(h, w, DefHistTypeMat);
calcKernelEpanechnikov(m_KernelHistModel);
if(m_KernelHistCandidate) cvReleaseMat(&m_KernelHistCandidate);
m_KernelHistCandidate = cvCreateMat(kernel_height, kernel_width, DefHistTypeMat);
calcKernelEpanechnikov(m_KernelHistCandidate);
if(m_Weights) cvReleaseMat(&m_Weights);
m_Weights = cvCreateMat(kernel_height, kernel_width, CV_32F);
for(s=-SCALE_RANGE;s<=SCALE_RANGE;++s)
{/* allocate kernwl for meanshifts in space and scale */
int si = s+SCALE_RANGE;
double cur_sigma = sigma * pow(SCALE_BASE,s);
double cur_sigma2 = cur_sigma*cur_sigma;
double x0 = 0.5*(kernel_width-1);
double y0 = 0.5*(kernel_height-1);
if(m_KernelMeanShiftK[si]) cvReleaseMat(&m_KernelMeanShiftK[si]);
if(m_KernelMeanShiftG[si]) cvReleaseMat(&m_KernelMeanShiftG[si]);
m_KernelMeanShiftK[si] = cvCreateMat(kernel_height, kernel_width, DefHistTypeMat);
m_KernelMeanShiftG[si] = cvCreateMat(kernel_height, kernel_width, DefHistTypeMat);
for(y=0;y<kernel_height;++y)
{
DefHistType* pK = (DefHistType*)CV_MAT_ELEM_PTR_FAST( m_KernelMeanShiftK[si][0], y, 0, sizeof(DefHistType) );
DefHistType* pG = (DefHistType*)CV_MAT_ELEM_PTR_FAST( m_KernelMeanShiftG[si][0], y, 0, sizeof(DefHistType) );
for(x=0;x<kernel_width;++x)
{
double r2 = ((x-x0)*(x-x0)/(x0*x0)+(y-y0)*(y-y0)/(y0*y0));
double sigma12 = cur_sigma2 / 2.56;
double sigma22 = cur_sigma2 * 2.56;
pK[x] = (DefHistType)(Gaussian2D(r2, sigma12)/sigma12 - Gaussian2D(r2, sigma22)/sigma22);
pG[x] = (DefHistType)(Gaussian2D(r2, cur_sigma2/1.6) - Gaussian2D(r2, cur_sigma2*1.6));
}
}/* next line */
}
}/* ReallocKernel*/
inline double Gaussian2D(double x, double sigma2)
{
return (exp(-x/(2*sigma2)) / (2*3.1415926535897932384626433832795*sigma2) );
}
void calcHist(IplImage* pImg, IplImage* pMask, CvPoint Center, CvMat* pKernel, CvMat* pHist, DefHistType* pHistVolume)
{
int w = pKernel->width;
int h = pKernel->height;
DefHistType Volume = 0;
int x0 = Center.x - w/2;
int y0 = Center.y - h/2;
int x,y;
//cvZero(pHist);
cvSet(pHist,cvScalar(1.0/m_BinNumTotal)); /* no zero bins, all bins have very small value*/
Volume = 1;
if(m_Dim == 3)
{
for(y=0;y<h;++y)
{
unsigned char* pImgData = NULL;
unsigned char* pMaskData = NULL;
DefHistType* pKernelData = NULL;
if((y0+y)>=pImg->height) continue;
if((y0+y)<0)continue;
pImgData = &CV_IMAGE_ELEM(pImg,unsigned char,y+y0,x0*3);
pMaskData = pMask?(&CV_IMAGE_ELEM(pMask,unsigned char,y+y0,x0)):NULL;
pKernelData = (DefHistType*)CV_MAT_ELEM_PTR_FAST(pKernel[0],y,0,sizeof(DefHistType));
for(x=0;x<w;++x,pImgData+=3)
{
if((x0+x)>=pImg->width) continue;
if((x0+x)<0)continue;
if(pMaskData==NULL || pMaskData[x]>128)
{
DefHistType K = pKernelData[x];
int index = HIST_INDEX(pImgData);
assert(index >= 0 && index < pHist->cols);
Volume += K;
((DefHistType*)(pHist->data.ptr))[index] += K;
}/* only masked pixels */
}/* next column */
}/* next row */
}/* if m_Dim == 3 */
if(pHistVolume)pHistVolume[0] = Volume;
};/*calcHist*/
double calcBhattacharyya()
{
cvMul(m_HistCandidate,m_HistModel,m_HistTemp);
cvPow(m_HistTemp,m_HistTemp,0.5);
return cvSum(m_HistTemp).val[0] / sqrt(m_HistCandidateVolume*m_HistModelVolume);
} /* calcBhattacharyyaCoefficient */
void calcWeights(IplImage* pImg, IplImage* pImgFG, CvPoint Center)
{
cvZero(m_Weights);
/* calc new pos */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -