📄 blobtrackinglist.cpp
字号:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cvaux.h"
#define PIX_HIST_BIN_NUM_1 3 //number of bins for classification (not used now)
#define PIX_HIST_BIN_NUM_2 5 //number of bins for statistic collection
#define PIX_HIST_ALPHA 0.01f //alpha-coefficient for running avarage procedure
#define PIX_HIST_DELTA 2 //maximal difference between descriptors(RGB)
#define PIX_HIST_COL_QUANTS 64 //quantization level in rgb-space
#define PIX_HIST_DELTA_IN_PIX_VAL (PIX_HIST_DELTA * 256 / PIX_HIST_COL_QUANTS) //allowed difference in rgb-space
//structures for background statistics estimation
typedef struct CvPixHistBin{
float bin_val;
uchar cols[3];
}CvPixHistBin;
typedef struct CvPixHist{
CvPixHistBin bins[PIX_HIST_BIN_NUM_2];
}CvPixHist;
//class for background statistics estimation
class CvBGEstimPixHist
{
private:
CvPixHist* m_PixHists;
int m_width;
int m_height;
//function for update color histogram for one pixel
void update_hist_elem(int x, int y, uchar* cols )
{
//find closest bin
int dist = 0, min_dist = 2147483647, indx = -1;
for( int k = 0; k < PIX_HIST_BIN_NUM_2; k++ ){
uchar* hist_cols = m_PixHists[y*m_width+x].bins[k].cols;
m_PixHists[y*m_width+x].bins[k].bin_val *= (1-PIX_HIST_ALPHA);
int l;
for( l = 0; l < 3; l++ ){
int val = abs( hist_cols[l] - cols[l] );
if( val > PIX_HIST_DELTA_IN_PIX_VAL ) break;
dist += val;
}
if( l == 3 && dist < min_dist ){
min_dist = dist;
indx = k;
}
}
if( indx < 0 ){//N2th elem in the table is replaced by a new features
indx = PIX_HIST_BIN_NUM_2 - 1;
m_PixHists[y*m_width+x].bins[indx].bin_val = PIX_HIST_ALPHA;
for(int l = 0; l < 3; l++ ){
m_PixHists[y*m_width+x].bins[indx].cols[l] = cols[l];
}
}
else {
//add vote!
m_PixHists[y*m_width+x].bins[indx].bin_val += PIX_HIST_ALPHA;
}
//re-sort bins by BIN_VAL
{
int k;
for(k = 0; k < indx; k++ ){
if( m_PixHists[y*m_width+x].bins[k].bin_val <= m_PixHists[y*m_width+x].bins[indx].bin_val ){
CvPixHistBin tmp1, tmp2 = m_PixHists[y*m_width+x].bins[indx];
//shift elements
for(int l = k; l <= indx; l++ ){
tmp1 = m_PixHists[y*m_width+x].bins[l];
m_PixHists[y*m_width+x].bins[l] = tmp2;
tmp2 = tmp1;
}
break;
}
}
}
}//void update_hist(...)
//function for calculation difference between histograms
float get_hist_diff(int x1, int y1, int x2, int y2)
{
float dist = 0;
for( int i = 0; i < 3; i++ ){
dist += labs(m_PixHists[y1*m_width+x1].bins[0].cols[i] -
m_PixHists[y2*m_width+x2].bins[0].cols[i]);
}
return dist;
}
public:
IplImage* bg_image;
CvBGEstimPixHist(CvSize img_size)
{
m_PixHists = (CvPixHist*)cvAlloc(img_size.width*img_size.height*sizeof(CvPixHist));
memset( m_PixHists, 0, img_size.width*img_size.height*sizeof(CvPixHist) );
m_width = img_size.width;
m_height = img_size.height;
bg_image = cvCreateImage(img_size, IPL_DEPTH_8U, 3 );
}/* constructor */
~CvBGEstimPixHist()
{
cvReleaseImage(&bg_image);
cvFree(&m_PixHists);
}/* destructor */
//function for update histograms and bg_image
void update_hists( IplImage* pImg )
{
for( int i = 0; i < pImg->height; i++ ){
for( int j = 0; j < pImg->width; j++ ){
update_hist_elem( j, i, ((uchar*)(pImg->imageData))+i*pImg->widthStep+3*j );
((uchar*)(bg_image->imageData))[i*bg_image->widthStep+3*j] = m_PixHists[i*m_width+j].bins[0].cols[0];
((uchar*)(bg_image->imageData))[i*bg_image->widthStep+3*j+1] = m_PixHists[i*m_width+j].bins[0].cols[1];
((uchar*)(bg_image->imageData))[i*bg_image->widthStep+3*j+2] = m_PixHists[i*m_width+j].bins[0].cols[2];
}
}
//cvNamedWindow("RoadMap2",0);
//cvShowImage("RoadMap2", bg_image);
}
};/* CvBGEstimPixHist */
/*======================= TRACKER LIST SHELL =====================*/
typedef struct DefBlobTrackerL
{
CvBlob blob;
CvBlobTrackerOne* pTracker;
int Frame;
int Collision;
CvBlobTrackPredictor* pPredictor;
CvBlob BlobPredict;
CvBlobSeq* pBlobHyp;
} DefBlobTrackerL;
class CvBlobTrackerList : public CvBlobTracker
{
private:
CvBlobTrackerOne* (*m_Create)();
CvBlobSeq m_BlobTrackerList;
// int m_LastID;
int m_Collision;
int m_ClearHyp;
float m_BGImageUsing;
CvBGEstimPixHist* m_pBGImage;
IplImage* m_pImgFG;
IplImage* m_pImgReg; /* mask for multiblob confidence calculation */
public:
CvBlobTrackerList(CvBlobTrackerOne* (*create)()):m_BlobTrackerList(sizeof(DefBlobTrackerL))
{
//int i;
CvBlobTrackerOne* pM = create();
// m_LastID = 0;
m_Create = create;
m_ClearHyp = 0;
m_pImgFG = 0;
m_pImgReg = NULL;
TransferParamsFromChild(pM,NULL);
pM->Release();
m_Collision = 1; /* if 1 then collistion will be detected and processed */
AddParam("Collision",&m_Collision);
CommentParam("Collision", "if 1 then collision cases are processed in special way");
m_pBGImage = NULL;
m_BGImageUsing = 50;
AddParam("BGImageUsing", &m_BGImageUsing);
CommentParam("BGImageUsing","Weight of using BG image in update hist model (0 - BG dies not use 1 - use)");
}
~CvBlobTrackerList()
{
int i;
if(m_pBGImage) delete m_pBGImage;
if(m_pImgFG) cvReleaseImage(&m_pImgFG);
if(m_pImgReg) cvReleaseImage(&m_pImgReg);
for(i=m_BlobTrackerList.GetBlobNum();i>0;--i)
{
m_BlobTrackerList.DelBlob(i-1);
}
};
CvBlob* AddBlob(CvBlob* pBlob, IplImage* pImg, IplImage* pImgFG )
{/* create new tracker */
DefBlobTrackerL F;
F.blob = pBlob[0];
// F.blob.ID = m_LastID++;
F.pTracker = m_Create();
F.pPredictor = cvCreateModuleBlobTrackPredictKalman();
F.pBlobHyp = new CvBlobSeq;
F.Frame = 0;
TransferParamsToChild(F.pTracker,NULL);
F.pTracker->Init(pBlob,pImg, pImgFG);
m_BlobTrackerList.AddBlob((CvBlob*)&F);
return m_BlobTrackerList.GetBlob(m_BlobTrackerList.GetBlobNum()-1);
};
void DelBlob(int BlobIndex)
{
DefBlobTrackerL* pF = (DefBlobTrackerL*)m_BlobTrackerList.GetBlob(BlobIndex);
if(pF == NULL) return;
pF->pTracker->Release();
pF->pPredictor->Release();
delete pF->pBlobHyp;
m_BlobTrackerList.DelBlob(BlobIndex);
}
void DelBlobByID(int BlobID)
{
DefBlobTrackerL* pF = (DefBlobTrackerL*)m_BlobTrackerList.GetBlobByID(BlobID);
if(pF == NULL) return;
pF->pTracker->Release();
pF->pPredictor->Release();
delete pF->pBlobHyp;
m_BlobTrackerList.DelBlobByID(BlobID);
}
virtual void Process(IplImage* pImg, IplImage* pImgFG = NULL)
{
int i;
if(pImgFG)
{
if(m_pImgFG) cvCopyImage(pImgFG,m_pImgFG);
else m_pImgFG = cvCloneImage(pImgFG);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -