⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matlab support vector machine toolbox.htm

📁 svm的分类和应用~~有详细的例子,非常实际和好用~~
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0046)http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/ -->
<HTML><HEAD><TITLE>MATLAB Support Vector Machine Toolbox</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312">
<META content="MSHTML 6.00.2900.2722" name=GENERATOR></HEAD>
<BODY text=#000000 vLink=#ff0000 link=#0000ff bgColor=#ffffff><BR><IMG 
src="MATLAB Support Vector Machine Toolbox.files/uea_logo.gif" align=right> 
<H2>MATLAB Support Vector Machine Toolbox</H2>
<H3><B>Dr Gavin Cawley</B></H3>
<H4>School of Information Systems,<BR>University of East Anglia</H4><BR>
<HR>

<P>
<H4>Introduction</H4>This is a (very) beta version of a MATLAB toolbox 
implementing Vapnik's support vector machine, as described in [1]. Training is 
performed using the SMO algorithm, due to Platt [2], implemented as a mex file 
(for speed). Before you use the toolbox you need to run the compilemex script to 
recompile them (if there are problems running this script, make sure you have 
the mex compiler set up correctly - you may need to see your sys-admin to do 
this). At the moment this is the only documentation for the toolbox but the file 
demo.m provides a simple demonstration that ought to be enough to get started. 
For a good introduction to support vector machines, see the excellent <A 
href="http://support-vector.net/">book</A> by Cristianini and Shawe-Taylor [3]. 
Key features of this toolbox: 
<UL>
  <LI>C++ MEX implementation of the SMO training algorithm, with caching of 
  kernel evaluations for efficiency. 
  <LI>Support for multi-class support vector classification using max wins, 
  pairwise [4] and DAG-SVM [5] algorithms. 
  <LI>A model selection criterion (the xi-alpha bound [6,7] on the leave-one-out 
  cross-validation error). 
  <LI>Object oriented design, currently this just means that you can supply 
  bespoke kernel functions for particular applications, but will in future 
  releases also support a range of training algorithms, model selection criteria 
  etc. </LI></UL>
<H4>Licensing Arrangements</H4>The toolbox is provided free for non-commercial 
use under the terms of the GNU <A 
href="http://www.gnu.org/copyleft/gpl.html">General Public License</A> (<A 
href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/license.txt">license.txt</A>), 
however, I would be grateful if: 
<UL>
  <LI>you let me know about any bugs you find, 
  <LI>you send suggestions of ideas to improve the toolbox (e.g. references to 
  other training algorithms), 
  <LI>reference the toolbox web page in any publication describing research 
  performed using the toolbox, or software derived from the toolbox. A suitable 
  BibTeX entry would look something like this: </LI></UL><PRE>@misc{Cawley2000,
   author       = "Cawley, G. C.",
   title        = "{MATLAB} Support Vector Machine Toolbox (v0.55$\beta$) $[$
                  \texttt{http://theoval.sys.uea.ac.uk/\~{}gcc/svm/toolbox}$]$",
   howpublished = "University of East Anglia, School of Information Systems,
                   Norwich, Norfolk, U.K. NR4 7TJ",
   year         = 2000 
}    
</PRE>
<H4>Download</H4>
<H5>Current Version</H5>
<UL>
  <LI>v0.55beta ( <A 
  href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/svm_v0.55beta.tar.gz">svm_v0.55beta.tar.gz</A>, 
  <A 
  href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/svm_v0.55beta.zip">svm_v0.55beta.zip</A>)<BR>New 
  in this version: 
  <UL>
    <LI>compilemex script to recompile all mex files implemented in the toolbox. 
    </LI></UL></LI></UL>
<H5>Previous Releases</H5>
<UL>
  <LI>v0.54beta (<A 
  href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/svm_v0.54beta.tar.gz">svm_v0.54beta.tar.gz</A>)<BR>New 
  in this version: 
  <UL>
    <LI>.mexsol binaries for Solaris </LI></UL>
  <LI>v0.53beta (<A 
  href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/svm_v0.53beta.tar.gz">svm_v0.53beta.tar.gz</A>)<BR>New 
  in this version: 
  <UL>
    <LI>nothing! (minor bug-fix in <CODE>@dagsvm/train.m</CODE>) </LI></UL>
  <LI>v0.52beta (<A 
  href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/svm_v0.52beta.tar.gz">svm_v0.52beta.tar.gz</A>)<BR>New 
  in this version: 
  <UL>
    <LI>A simple demo of the DAG-SVM algorithm for multi-class pattern 
    recognition (<CODE>dagsvmdemo.m</CODE>). </LI></UL>
  <LI>v0.51beta (<A 
  href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/svm_v0.51beta.tar.gz">svm_v0.51beta.tar.gz</A>)<BR>New 
  in this version: 
  <UL>
    <LI>Compiled mex files for Windows systems 
    <UL>
      <LI>Uses a relatively small cache size for SMO training (32Mb), this will 
      be adjustable in a future release. 
      <LI>Caveat emptor: runs demo.m, but not thoroughly tested. 
</LI></UL></LI></UL>
  <LI>v0.50beta (<A 
  href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/svm_v0.50beta.tar.gz">svm_v0.50beta.tar.gz</A>)<BR>New 
  in this version: 
  <UL>
    <LI>Support for multi-class pattern recognition using maxwins, pairwise [4] 
    and DAG-SVM [5] algorithms. 
    <LI>A model selection criterion (the xi-alpha bound [6,7] on the 
    leave-one-out cross-validation error). </LI></UL>
  <LI>v0.01beta (<A 
  href="http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/svm_v0.01beta.tar.gz">svm_v0.01beta.tar.gz</A>) 
  </LI></UL>
<H4>"To Do" List</H4>
<OL>
  <LI>Find time to write a proper list of things to do! 
  <LI>Documentation. 
  <LI>Support Vector Regression. 
  <LI>Automated model selection. 
  <LI>Sparse matrix support </LI></OL>
<H4>References</H4><PRE>[1] V.N. Vapnik,
    "The Nature of Statistical Learning Theory",
    Springer-Verlag, New York, ISBN 0-387-94559-8,
    1995.  

[2] J. C. Platt,
    "Fast training of support vector machines using sequential minimal
    optimization", in Advances in Kernel Methods - Support Vector Learning,
    (Eds) B. Scholkopf, C. Burges, and A. J. Smola, MIT Press, Cambridge,
    Massachusetts, chapter 12, pp 185-208, 1999. 

[3] N. Cristianini and J. Shawe-Taylor,
    "Support Vector Machines and other kernel-based learning methods",
    Cambridge University Press, ISBN 0-521-78019-5,
    2000. (<A href="http://support-vector.net/">Web site</A>)

[4] U. Kressel,
    "Pairwise Classification and Support Vector Machines",
    in Advances in Kernel Methods - Support Vector Learning,
    (Eds) B. Scholkopf, C. Burges, and A. J. Smola, MIT Press, Cambridge,
    Massachusetts, chapter 15, 1999. 

[5] J. Platt, N. Cristianini, J. Shawe-Taylor,
    "Large Margin DAGs for Multiclass Classification", 
    in Advances in Neural Information Processing Systems 12, pp. 547-553,
    MIT Press, 2000.
    (<A href="http://www.cs.cmu.edu/Web/Groups/NIPS/NIPS99/99papers-pub-on-web/Named-gz/PlattCristianiniShawe-Taylor.ps.gz">PlattCristianiniShawe-Taylor.ps.gz</A>).

[6] T. Joachims,
    "Estimating the Generalization Performance of a SVM Efficiently",
     25, Universit鋞 Dortmund, LS VIII, 1999.

[7] T. Joachims,
    "Estimating the Generalization Performance of a SVM Efficiently",
    in Proceedings of the International Conference on Machine Learning,
    Morgan Kaufman, 2000.
</PRE>
<HR>

<CENTER>
<ADDRESS>Gavin Cawley / <A href="mailto:gcc@sys.uea.ac.uk">gcc@sys.uea.ac.uk</A> 
</ADDRESS></CENTER></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -