⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clutter_plot1.m

📁 基于RBMCDA (Rao-Blackwellized Monte Carlo Data Association)方法的多目标追踪程序
💻 M
字号:
  % Draws the filtered estimate of the clutter demo    % Set the figure properties  set(gcf,'PaperType','a4');  set(gcf,'PaperPosition',[0.25 2.5 3.8 3]);  set(gca,'Position',[0.25 2.5 3.8 3]);   % Find the clutter and non-clutter measurements  I1 = find(TC);  I2 = find(TC == 0);    % Plot the measurements  clf;  h=plot(Y(1,I1),Y(2,I1),'ko',...         Y(1,I2),Y(2,I2),'kx');  set(h(1),'color',[0.3 0.3 0.3]);  set(h,'markersize',4);  hold on;  % Plot the true trajectory and mean estimate  h=plot(X_r(1,:),X_r(2,:),'-',...         EST_mc1(1,:),EST_mc1(2,:),'--');   set(h(1),'color',[0.5 0.5 0.5]);  set(h(2),'color',[0.0 0.0 0.0]);  hold on  % Plot particles  for i = 1:size(X_r,2)      nvis = 50;      MV = zeros(m,N1);      PV = zeros(m,m,N1);      for j=1:N1          MV(:,j)   = SS{i,j}.M{1};          PV(:,:,j) = SS{i,j}.P{1};      end      S1 = SS(i,:);      tmp = [S1{:}];      W1 = [tmp.W];      samp = gmm_rnd(MV,PV,W1,nvis);      h = plot(samp(1,:),samp(2,:),'r.');      set(h(1),'color',[0.0 0.0 0.0]);      set(h,'markersize',2);      set(h,'linewidth',2);  end    set(h,'markersize',2);  set(h,'linewidth',2);  set(gca,'FontSize',4);    legend('Measurement',...         'Clutter Measurement',...         'True Signal',...         'RBMCDA Estimate')    xlim([cx_min cx_max]);  ylim([cy_min cy_max]);    hold off

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -