⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kf_mcda_predict.m

📁 基于RBMCDA (Rao-Blackwellized Monte Carlo Data Association)方法的多目标追踪程序
💻 M
字号:
%KF_MCDA_PREDICT  KF Monte Carlo Data Association Prediction%% Syntax:%   S = KF_MCDA_PREDICT(S,A,Q)%% In:%   S - 1xN cell array containing particle structures.%   A - State transition matrix which can be a same numeric matrix %       for every target or a TxN cell array containing separate matrices%       for each target in each particle.      %   Q - Process noise covariance matrix which can be a same numeric matrix %       for every target or a TxN cell array containing separate matrices%       for each target in each particle.%% Out:%   S - 1xN cell array containing the struct arrays of predicted particles.%   % Description:%   Perform Extended Kalman Filter prediction step for each target%   and each association hypothesis particle. The model is%%     x_i[k] = a_i(x_i[k-1], q , param),  q ~ N(0,Q_i)%%   for each target i. Dynamics a_i() for each target%   are assumed to have known statistics.%% See also:%   KF_MCDA_UPDATE, KF_PREDICT, KF_UPDATE% History:%    29.01.2008  JH  The first official version.%% Copyright (C)  2008 Jouni Hartikainen%% $Id: kf_mcda_predict.m, $%% This software is distributed under the GNU General Public % Licence (version 2 or later); please refer to the file % Licence.txt, included with the software, for details.function S = kf_mcda_predict(S,A,Q)  %  % Check arguments  %  if nargin < 2    A = [];  end  if nargin < 3    Q = [];  end  % Number of particles  NP = size(S,2);    % Number of targets  NT = size(S{1}.M,2);    %  % Apply defaults  %  if isempty(A)      A = eye(size(S{1}.M{1},1));  end  if isempty(Q)      Q = cell(NT,NP);      for j=1:NP          for i=1:NT              Q{i,j} = zeros(size(S{j}.M{i},1));          end      end  end  %  % Evaluate matrix A and  % turn it into cell array.  %  if iscell(A)      % nop  elseif isnumeric(A)      tmp = A;      A = cell(NT,1);      for j = 1:NP          for i=1:NT              A{i,j} = tmp;          end            end  else      error('A is not of supported form!');  end  %  % Turn matrix Q into cell array  %  if iscell(Q)      % nop  elseif isnumeric(Q)      tmp = Q;      Q = cell(NT,NP);      for j=1:NP          for i=1:NT              Q{i,j} = tmp;          end      end  else      error('Q is not of supported form!');  end  %  % Calculate predicted mean and covariance  % for each target  %  for j=1:NP      for i=1:NT          [S{j}.M{i},S{j}.P{i}] = kf_predict(S{j}.M{i},S{j}.P{i},A{i,j},Q{i,j});            end  end  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -