⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ukf_mcda_smooth.m

📁 基于RBMCDA (Rao-Blackwellized Monte Carlo Data Association)方法的多目标追踪程序
💻 M
字号:
%UKF_MCDA_SMOOTH  RTS Smoothing of particles in UKF-RBMCDA algorithm%% Syntax:%   [S,SM] = UKF_MCDA_SMOOTH(S,a,Q,param,same_p)%% In:%   S  - NxNP cell array containing NP particle structures for N time steps.%   a  - Dynamical model as cell array%        of size TxN, for each target in each particle,%        or inline function or name of function in%        form a(x,i,param), where i is the%        index of the target x.                    (optional, default A(x,i)*X)%   Q  - Process noise of discrete model as matrix%        if common for all targets, or as cell array%        of size Tx1 for all targets separately.   (optional, default zero)%  param - Parameters of a.%  same_p - 1 if the same parameters should be%           used on every time step                (optional, default 1)%% Out:%   S  - NxNP cell array containing the smoothed particles for each time step.%   SM - 1xT cell array containing smoothed means for each target as a%        matrix DxN.% % Description:%   Perform Extended Kalman Filter prediction step for each target%   and each association hypothesis particle. The model is%%     x_i[k] = a_i(x_i[k-1], q , param),  q ~ N(0,Q_i)%%   for each target i. Dynamics a_i() for each target%   are assumed to have known statistics.%% See also:%   EKF_MCDA_UPDATE, EKF_PREDICT, LTI_DISC, KF_PREDICT% History:%    24.01.2008  JH  The first official version.%% Copyright (C) 2008 Jouni Hartikainen%% $Id:  $%% This software is distributed under the GNU General Public % Licence (version 2 or later); please refer to the file % Licence.txt, included with the software, for details.function [SS,SM] = ukf_mcda_smooth(S,A,Q,a,WW,param,same_p)            % Default values    if nargin < 4        a = [];    end    if nargin < 5        WW = [];    end    if nargin < 6        param = [];    end    if nargin < 7        same_p = [];    end        % Number of particles    NP = size(S,2);    % Number of targets    NT = size(S{1,1}.M,2);    % Number of data points    n = size(S,1);        % State space dimensionality    m = size(S{1,1}.M{1},1);        % Struct for the smoothed particles    str = struct(...        'M',{{}},... % Cell array 1xT of T target means        'P',{{}},... % Cell array 1xT of T target covariances        'W',0 ...    );    % Initialize the cell array     SS = cell(n,NP);    for i = 1:n        for j = 1:NP            SS{i,j} = str;            SS{i,j}.W = S{n,j}.W;        end    end        MM = zeros(m,n);    PP = zeros(m,m,n);    % Space for smoothed means of each target    SM = cell(1,NT);    for i = 1:NT        SM{i} = zeros(m,n);    end        for k = 1:NT        for i=1:NP            % Form each trajectory for the smoother            for j = 1:n                PP(:,:,j) = S{j,i}.P{k};                MM(:,j) = S{j,i}.M{k};            end                        % Smooth each trajectory            [SM_i, SP_i] = urts_smooth1(MM,PP,A,Q,a,WW,param,same_p);            % Save smoothed particles            for j = 1:n                SS{j,i}.M{k} = SM_i(:,j);                SS{j,i}.P{k} = SP_i(:,:,j);            end            % Smoothed mean             SM{k} = SM{k} + S{n,i}.W*SM_i;        end    end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -