⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 az_cgstab.c

📁 并行解法器,功能强大
💻 C
字号:
/*==================================================================== * ------------------------ * | CVS File Information | * ------------------------ * * $RCSfile: az_cgstab.c,v $ * * $Author: tuminaro $ * * $Date: 2000/06/02 16:46:55 $ * * $Revision: 1.28 $ * * $Name:  $ *====================================================================*/#ifndef lintstatic char rcsid[] = "$Id: az_cgstab.c,v 1.28 2000/06/02 16:46:55 tuminaro Exp $";#endif/******************************************************************************* * Copyright 1995, Sandia Corporation.  The United States Government retains a * * nonexclusive license in this software as prescribed in AL 88-1 and AL 91-7. * * Export of this program may require a license from the United States         * * Government.                                                                 * ******************************************************************************/#include <stdlib.h>#include <stdio.h>#include <math.h>#include <float.h>#include "az_aztec.h"void AZ_pbicgstab(double b[], double x[], double weight[], int options[], 	double params[],int proc_config[], double status[], AZ_MATRIX *Amat, 	AZ_PRECOND *precond, struct AZ_CONVERGE_STRUCT *convergence_info)/*******************************************************************************  Vand der Vorst's (1990) variation of the Bi-Conjugate Gradient algorthm  (Sonneveld (1984,1989)) to solve the nonsymmetric matrix problem Ax = b.  Author:          John N. Shadid, SNL, 1421  =======  Return code:     void  ============  Parameter list:  ===============  b:               Right hand side of linear system.  x:               On input, contains the initial guess. On output contains the                   solution to the linear system.  weight:          Vector of weights for convergence norm #4.  options:         Determines specific solution method and other parameters.  params:          Drop tolerance and convergence tolerance info.  proc_config:     Machine configuration.  proc_config[AZ_node] is the node                   number.  proc_config[AZ_N_procs] is the number of processors.  status:          On output, indicates termination status:                    0:  terminated normally.                   -1:  maximum number of iterations taken without achieving                        convergence.                   -2:  Breakdown. The algorithm can not proceed due to                        numerical difficulties (usually a divide by zero).                   -3:  Internal residual differs from the computed residual due                        to a significant loss of precision.  Amat:            Structure used to represent the matrix (see file az_aztec.h                   and Aztec User's Guide).  precond:         Structure used to represent the preconditionner                   (see file az_aztec.h and Aztec User's Guide).*******************************************************************************/{  /* local variables */  register int    i;  int             N, NN, converged, one = 1, iter=1, r_avail = AZ_TRUE, j;  int             precond_flag, print_freq, proc;  int             brkdown_will_occur = AZ_FALSE;  double          alpha = 1.0, beta, true_scaled_r=0.0;  double          *v, *r, *rtilda, *p, *phat, *s, *shat;  double          omega = 1.0, dot_vec[2], tmp[2], init_time = 0.0;  double          rhonm1 = 1.0, rhon, sigma, brkdown_tol = DBL_EPSILON;  double          scaled_r_norm, actual_residual = -1.0, rec_residual, epsilon;  double          dtemp;  int          *data_org, str_leng, first_time = AZ_TRUE;  char         label[64],suffix[32], prefix[64];  /**************************** execution begins ******************************/  sprintf(suffix," in cgstab%d",options[AZ_recursion_level]);                                                           /* set string that will be used */                                                           /* for manage_memory label      */  /* set prefix for printing */  str_leng = 0;  for (i = 0; i < 16; i++) prefix[str_leng++] = ' ';  for (i = 0 ; i < options[AZ_recursion_level]; i++ ) {     prefix[str_leng++] = ' '; prefix[str_leng++] = ' '; prefix[str_leng++] = ' ';     prefix[str_leng++] = ' '; prefix[str_leng++] = ' ';  }  prefix[str_leng] = '\0';  data_org = Amat->data_org;  /* pull needed values out of parameter arrays */  N            = data_org[AZ_N_internal] + data_org[AZ_N_border];  precond_flag = options[AZ_precond];  epsilon      = params[AZ_tol];  proc         = proc_config[AZ_node];  print_freq   = options[AZ_print_freq];  /* allocate memory for required vectors */  NN     = N + data_org[AZ_N_external];  if (NN == 0) NN++;   /* make sure everybody allocates something*/  NN = NN + (NN%2);    /* make sure things are aligned for the   */                       /* assembly coded matvec() on the Intel.  */  sprintf(label,"phat%s",suffix);  phat   = (double *) AZ_manage_memory(7*NN*sizeof(double), AZ_ALLOC,                                        AZ_SYS, label,&j);  p      = &(phat[1*NN]);  shat   = &(phat[2*NN]);   /* NOTE: phat and shat must be aligned */                            /*       so that the assembly dgemv    */                            /*       works on the paragon.         */  s      = &(phat[3*NN]);  r      = &(phat[4*NN]);  rtilda = &(phat[5*NN]);  v      = &(phat[6*NN]);  AZ_compute_residual(b, x, r, proc_config, Amat);  /* v, p <- 0 */  for (i = 0; i < N; i++) v[i] = p[i] = 0.0;  /* set rtilda */  if (options[AZ_aux_vec] == AZ_resid)    dcopy_(&N, r, &one, rtilda, &one);  else    AZ_random_vector(rtilda, data_org, proc_config);  /*   * Compute a few global scalars:   *     1) ||r||                corresponding to options[AZ_conv]   *     2) scaled ||r||         corresponding to options[AZ_conv]   *     3) rho = <rtilda, r>   */  AZ_compute_global_scalars(Amat, x, b, r,                            weight, &rec_residual, &scaled_r_norm, options,                            data_org, proc_config,&r_avail,r,rtilda, &rhon,                            convergence_info);  true_scaled_r = scaled_r_norm;  if ((options[AZ_output] != AZ_none) && (options[AZ_output] != AZ_last) &&      (options[AZ_output] != AZ_warnings) && (proc == 0))    (void) fprintf(stdout, "%siter:    0           residual = %e\n",prefix,scaled_r_norm);  converged = scaled_r_norm < epsilon;  for (iter = 1; iter <= options[AZ_max_iter] && !converged; iter++) {    if (brkdown_will_occur) {      AZ_scale_true_residual( x, b, v,                             weight, &actual_residual, &true_scaled_r, options,                             data_org, proc_config, Amat, convergence_info);      AZ_terminate_status_print(AZ_breakdown, iter, status, rec_residual,                                params, true_scaled_r, actual_residual, options,                                proc_config);      return;    }    beta = (rhon/rhonm1) * (alpha/omega);    if (fabs(rhon) < brkdown_tol) { /* possible problem */      if (AZ_breakdown_f(N, r, rtilda, rhon, proc_config))        brkdown_will_occur = AZ_TRUE;      else        brkdown_tol = 0.1 * fabs(rhon);    }    rhonm1 = rhon;    /* p    = r + beta*(p - omega*v)       */    /* phat = M^-1 p                       */    /* v    = A phat                       */    dtemp = beta * omega;    for (i = 0; i < N; i++) p[i] = r[i] + beta * p[i] - dtemp * v[i];    dcopy_(&N, p, &one, phat, &one);    if (iter==1) init_time = AZ_second();    if (precond_flag)      precond->prec_function(phat,options,proc_config,params,Amat,precond);    if (iter==1) status[AZ_first_precond] = AZ_second() - init_time;    Amat->matvec(phat, v, Amat, proc_config);    sigma = AZ_gdot(N, rtilda, v, proc_config);    if (fabs(sigma) < brkdown_tol) { /* possible problem */      if (AZ_breakdown_f(N, rtilda, v, sigma, proc_config)) {        /* break down */        AZ_scale_true_residual( x, b, v,                               weight, &actual_residual, &true_scaled_r,                               options, data_org,proc_config, Amat,			       convergence_info);        AZ_terminate_status_print(AZ_breakdown, iter, status, rec_residual,                                  params, true_scaled_r, actual_residual,                                  options, proc_config);        return;      }      else brkdown_tol = 0.1 * fabs(sigma);    }    alpha = rhon / sigma;    /* s = r - alpha*v                     */    /* shat = M^-1 s                       */    /* r = A shat (r is a tmp here for t ) */    for (i = 0; i < N; i++) s[i] = r[i] - alpha * v[i];    dcopy_(&N, s, &one, shat, &one);    if (precond_flag)          precond->prec_function(shat,options,proc_config,params,Amat,precond);    Amat->matvec(shat, r, Amat, proc_config);    /* omega = (t,s)/(t,t) with r = t */    dot_vec[0] = ddot_(&N, r, &one, s, &one);    dot_vec[1] = ddot_(&N, r, &one, r, &one);    AZ_gdot_vec(2, dot_vec, tmp, proc_config);    if (fabs(dot_vec[1]) < DBL_MIN) {      omega = 0.0;      brkdown_will_occur = AZ_TRUE;    }    else omega = dot_vec[0] / dot_vec[1];    /* x = x + alpha*phat + omega*shat */    /* r = s - omega*r */    daxpy_(&N, &alpha, phat, &one, x, &one);    daxpy_(&N, &omega, shat, &one, x, &one);    for (i = 0; i < N; i++) r[i] = s[i] - omega * r[i];    /*     * Compute a few global scalars:     *     1) ||r||                corresponding to options[AZ_conv]     *     2) scaled ||r||         corresponding to options[AZ_conv]     *     3) rho = <rtilda, r>     */    AZ_compute_global_scalars(Amat, x, b, r,                              weight, &rec_residual, &scaled_r_norm, options,                              data_org, proc_config, &r_avail, r, rtilda, &rhon,                              convergence_info);    if ( (iter%print_freq == 0) && proc == 0)      (void) fprintf(stdout, "%siter: %4d           residual = %e\n",prefix,iter,                     scaled_r_norm);    /* convergence tests */    converged = scaled_r_norm < epsilon;    if (options[AZ_check_update_size] & converged) {      dtemp = alpha/omega;      daxpy_(&N, &dtemp, phat, &one, shat, &one);      converged = AZ_compare_update_vs_soln(N, -1.,omega, shat, x,                                         params[AZ_update_reduction],                                         options[AZ_output], proc_config, &first_time);    }    if (converged) {      AZ_scale_true_residual(x, b, v,                             weight, &actual_residual, &true_scaled_r, options,                             data_org, proc_config, Amat, convergence_info);      converged = true_scaled_r < params[AZ_tol];      /*       * Note: epsilon and params[AZ_tol] may not be equal due to a previous       *       call to AZ_get_new_eps().       */      if (!converged &&          (AZ_get_new_eps(&epsilon, scaled_r_norm, true_scaled_r,                          proc_config) == AZ_QUIT)) {        /*         * Computed residual has converged, actual residual has not converged,         * AZ_get_new_eps() has decided that it is time to quit.         */        AZ_terminate_status_print(AZ_loss, iter, status, rec_residual, params,                                  true_scaled_r, actual_residual, options,                                  proc_config);        return;      }    }  }  iter--;  if ( (iter%print_freq != 0) && (proc == 0) && (options[AZ_output] != AZ_none)       && (options[AZ_output] != AZ_warnings))    (void) fprintf(stdout, "%siter: %4d           residual = %e\n", prefix,iter,                   scaled_r_norm);  /* check if we exceeded maximum number of iterations */  if (converged) {    i = AZ_normal;    scaled_r_norm = true_scaled_r;  }  else    i = AZ_maxits;  AZ_terminate_status_print(i, iter, status, rec_residual, params,                            scaled_r_norm, actual_residual, options,                            proc_config);} /* bicgstab */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -