📄 adsp-2181_c.ldf
字号:
// $Revision: 1.5.14.2 $
ARCHITECTURE(ADSP-2181)
//#define __EZKIT_LICENSE_RESTRICTION_21xx__
//#define __RESERVE_AUTOBUFFER_REGS__
#ifndef __NO_STD_LIB
SEARCH_DIR( $ADI_DSP/218x/lib )
#endif
// Use of the "-reserve" switch with I2, I3, I5, I7 or M0 causes cc218x
// to define macro __RESERVE_AUTOBUFFER_REGS__ at compile, assemble,
// and link phases to use specially adapted library functions
// built with all these registers reserved.
#ifdef __RESERVE_AUTOBUFFER_REGS__
$CLIBS = libioab.dlb , libcab.dlb, libc.dlb, libetsi.dlb;
#else // ! __RESERVE_AUTOBUFFER_REGS__
$CLIBS = libio.dlb , libc.dlb, libetsi.dlb;
#endif // __RESERVE_AUTOBUFFER_REGS__
// The linker, upon invocation, will determine if the user has a restricted
// license or not. If the user has a restricted license, the preprocessor
// macro __EZKIT_LICENSE_RESTRICTION_21xx__ shall be defined. This default
// LDFs uses this macro to support linkage with a restricted licenses.
// Furthermore, for those EZ-Kits that require an on-target monitor program,
// the LDF will also ensure that this monitor is not overwritten by the users
// executable image.
// It will also ensure that the DSP is correctly initialised for
// the monitor program by using alternate CRT objects.
#ifdef __EZKIT_LICENSE_RESTRICTION_21xx__
$START = 218x_ezkit_hdr.doj;
$INTTAB = 218x_ezkit_int_tab.doj;
#else
$START = 218x_hdr.doj;
$INTTAB = 218x_int_tab.doj;
#endif
// Libraries from the command line are included in COMMAND_LINE_OBJECTS.
$OBJECTS = $START, $INTTAB, $COMMAND_LINE_OBJECTS;
$LIBRARIES = $CLIBS;
// do not allow linkers -e(elimination) various symbols
// _main - C/C++ application main() function
// ___reserved_bitmask - compiler defined bitmask depicting reserved registers
KEEP(_main)
#ifdef __RESERVE_AUTOBUFFER_REGS__
KEEP(___reserved_bitmask)
#endif // __RESERVE_AUTOBUFFER_REGS__
// 2181 has 16K words of 24-bit internal Program RAM and 16K words of 16-bit
// internal Data RAM the commented mem_pmovly and mem_dmovly would be to map
// the external overlay pages mem_pmpage1,2 and mem_dmpage1,2 (these pages
// are unused in this default ldf; instead, all of DMOVLAY 0 space is in
// mem_data1 and PMOVLAY0 space is divided between mem_code and mem_data2.
// Compiler defaults:
// The default program memory used by the compiler will be in
// a section called program, and gets placed in a memory segment
// being defined below as mem_code.
//
// The default DM data memory used by the compiler will be in
// a section called data1, and gets placed in a memory segment
// being defined below as mem_data1.
//
// The default PM data memory used by the compiler will be in
// a section called data2, and gets placed in a memory segment
// being defined below as mem_data2.
//
// The memory segment used for dynamic memory used by allocation
// routines such as malloc will is called mem_heap.
//
// The memory segment used for the software stack pointed to by
// STACKPOINTER(I4) and FRAMEPOINTER(I5) is called mem_stack.
// The default LDF files will not define or use overlays.
// Some commented out example code can be found below that demonstrates
// how overlay builds might be implemented.
MEMORY
{
// The memory section where the reset vector resides
mem_INT_RSTI { TYPE(PM RAM) START(0x000000) END(0x000003) WIDTH(24) }
// The memory sections where the interrupt vector code
// resides.
mem_INT_IRQ2 { TYPE(PM RAM) START(0x000004) END(0x000007) WIDTH(24) }
mem_INT_IRQL1 { TYPE(PM RAM) START(0x000008) END(0x00000B) WIDTH(24) }
mem_INT_IRQL0 { TYPE(PM RAM) START(0x00000c) END(0x00000F) WIDTH(24) }
mem_INT_SPORT0X { TYPE(PM RAM) START(0x000010) END(0x000013) WIDTH(24) }
mem_INT_SPORT0R { TYPE(PM RAM) START(0x000014) END(0x000017) WIDTH(24) }
mem_INT_IRQE { TYPE(PM RAM) START(0x000018) END(0x00001B) WIDTH(24) }
mem_INT_BDMA { TYPE(PM RAM) START(0x00001C) END(0x00001F) WIDTH(24) }
mem_INT_IRQ1 { TYPE(PM RAM) START(0x000020) END(0x000023) WIDTH(24) }
mem_INT_IRQ0 { TYPE(PM RAM) START(0x000024) END(0x000027) WIDTH(24) }
mem_INT_TIMER { TYPE(PM RAM) START(0x000028) END(0x00002B) WIDTH(24) }
mem_INT_PWRDWN { TYPE(PM RAM) START(0x00002C) END(0x00002F) WIDTH(24) }
#ifdef __EZKIT_LICENSE_RESTRICTION_21xx__ // see comments above wrt this macro
// Memory Map (ref. ADSP-2181 EZ-KIT Lite Evaluation System Manual )
//
// Start Address End Address Content
// ==================================================================
// PM 0x0000 0x002F Interrupt vector Table
// PM 0x0030 0x17CF Available for user code
// PM 0x17D0 0x1FFF Reserved for monitor code
// PM 0x2000 0x3FFF Available for user code
// DM 0x0000 0x3AFF Available for user data
// DM 0x3B00 0x3DFF Reserved for monitor data
//
// The size of the program code that you can link using the
// EZ-KIT Lite tools is limited to 0x2000 words.
// Interrupt vector Table memory as default, defined above (uses 0x30)
// 0x1800 (-0x30) program memory words
mem_code { TYPE(PM RAM) START(0x002000) END(0x0037cf) WIDTH(24) }
// 0x800 (2k) data2 program memory words
//mem_data2 { TYPE(PM RAM) START(0x000030) END(0x00022f) WIDTH(24) }
mem_data2 { TYPE(PM RAM) START(0x000030) END(0x00042f) WIDTH(24) }
mem_data1 { TYPE(DM RAM) START(0x000000) END(0x002fff) WIDTH(16) }
mem_heap { TYPE(DM RAM) START(0x003000) END(0x0034ff) WIDTH(16) }
mem_stack { TYPE(DM RAM) START(0x003500) END(0x003aff) WIDTH(16) }
#else // !__EZKIT_LICENSE_RESTRICTION_21xx__
// Interrupt vector Table memory as default, defined above
mem_code { TYPE(PM RAM) START(0x000030) END(0x0037ba) WIDTH(24) }
mem_data2 { TYPE(PM RAM) START(0x0037bb) END(0x003fff) WIDTH(24) }
mem_data1 { TYPE(DM RAM) START(0x000000) END(0x002fff) WIDTH(16) }
mem_heap { TYPE(DM RAM) START(0x003000) END(0x0037ff) WIDTH(16) }
mem_stack { TYPE(DM RAM) START(0x003800) END(0x003fdf) WIDTH(16) }
#endif // __EZKIT_LICENSE_RESTRICTION_21xx__
/*
mem_pmovly { TYPE(PM RAM) START(0x002000) END(0x003fff) WIDTH(24) }
//"run" space for PMOVLAY pages
mem_pmpage1 { TYPE(PM RAM) START(0x012000) END(0x013fff) WIDTH(24) }
mem_pmpage2 { TYPE(PM RAM) START(0x022000) END(0x023fff) WIDTH(24) }
mem_dmovly { TYPE(DM RAM) START(0x000000) END(0x001fff) WIDTH(16) }
//"run" space for DMOVLAY pages
mem_dmpage1 { TYPE(DM RAM) START(0x010000) END(0x011fff) WIDTH(16) }
mem_dmpage2 { TYPE(DM RAM) START(0x020000) END(0x021fff) WIDTH(16) }
*/
} // end of memory map
/*
// Procedure Linkage Table (PLIT) template. The PLIT is a jump table
// constructed by Linker in root memory. Each call to an overlay
// section is replaced with a call to the PLIT. This template tells
// link what instructions to put into each PLIT entry. Keyword PLIT
// must be all capitals, as the linker is case sensitive.
PLIT
{
PMOVLAY = PLIT_SYMBOL_OVERLAYID;
JUMP PLIT_SYMBOL_ADDRESS;
}*/
PROCESSOR p0
{
LINK_AGAINST( $COMMAND_LINE_LINK_AGAINST)
OUTPUT( $COMMAND_LINE_OUTPUT_FILE )
SECTIONS
{
sec_INT_RSTI {
INPUT_SECTIONS ( $OBJECTS( IVreset ) )
} > mem_INT_RSTI
sec_INT_IRQ2 {
INPUT_SECTIONS ( $OBJECTS( IVirq2 ) )
} > mem_INT_IRQ2
sec_INT_IRQL1 {
INPUT_SECTIONS ( $OBJECTS( IVirql1 ) )
} > mem_INT_IRQL1
sec_INT_IRQL0 {
INPUT_SECTIONS ( $OBJECTS( IVirql0 ) )
} > mem_INT_IRQL0
sec_INT_SPORT0X {
INPUT_SECTIONS ( $OBJECTS( IVsport0xmit ) )
} > mem_INT_SPORT0X
sec_INT_SPORT0R {
INPUT_SECTIONS ( $OBJECTS( IVsport0recv ) )
} > mem_INT_SPORT0R
sec_INT_IRQE {
INPUT_SECTIONS ( $OBJECTS( IVirqe ) )
} > mem_INT_IRQE
sec_INT_BDMA {
INPUT_SECTIONS ( $OBJECTS( IVbdma ) )
} > mem_INT_BDMA
sec_INT_IRQ1 {
INPUT_SECTIONS ( $OBJECTS( IVirq1 ) )
} > mem_INT_IRQ1
sec_INT_IRQ0 {
INPUT_SECTIONS ( $OBJECTS( IVirq0 ) )
} > mem_INT_IRQ0
sec_INT_TIMER {
INPUT_SECTIONS ( $OBJECTS( IVtimer ) )
} > mem_INT_TIMER
sec_INT_PWRDWN {
INPUT_SECTIONS ( $OBJECTS( IVpwrdwn ) )
} > mem_INT_PWRDWN
sec_code
{
INPUT_SECTIONS( $OBJECTS(program) $LIBRARIES(program) )
} > mem_code
.meminit {
FORCE_CONTIGUITY
} > mem_code
sec_data1
{
INPUT_SECTIONS( $OBJECTS(data1) $LIBRARIES(data1) )
} > mem_data1
sec_data2
{
INPUT_SECTIONS( $OBJECTS(data2) $LIBRARIES(data2) )
} > mem_data2
// provide linker variables describing the stack (grows down)
// ldf_stack_limit is the lowest address in the stack
// ldf_stack_base is the highest address in the stack
sec_stack
{
ldf_stack_limit = .;
ldf_stack_base = . + MEMORY_SIZEOF(mem_stack) - 1;
} > mem_stack
sec_heap
{
.heap = .;
.heap_size = MEMORY_SIZEOF(mem_heap);
.heap_end = . + MEMORY_SIZEOF(mem_heap) - 1;
} > mem_heap
/*
// pages not populated by default
// example ldf code to build external PMOVLAY pages
sec_pmpage
{
PAGE_INPUT
{
ALGORITHM(ALL_FIT)
PAGE_OUTPUT(pmpage1.ovl)
INPUT_SECTIONS( $PMPAGE_OBJ_1(data2) )
} > mem_pmpage1
PAGE_INPUT
{
ALGORITHM(ALL_FIT)
PAGE_OUTPUT(pmpage2.ovl)
INPUT_SECTIONS( $PMPAGE_OBJ_2(program) )
} > mem_pmpage2
} > mem_pmovly
// example ldf code to build external DMOVLAY pages
sec_dmpage
{
PAGE_INPUT
{
ALGORITHM(ALL_FIT)
PAGE_OUTPUT(dmpage1.ovl)
INPUT_SECTIONS( $DMPAGE_OBJ_1(data1) )
} > mem_dmpage1
PAGE_INPUT
{
ALGORITHM(ALL_FIT)
PAGE_OUTPUT(dmpage2.ovl)
INPUT_SECTIONS( $DMPAGE_OBJ_2(data1) )
} > mem_dmpage2
} > mem_dmovly
.plit { } > mem_code
*/
} // SECTIONS
} // PROCESSOR p0
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -