⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix.hpp

📁 support vector clustering for vc++
💻 HPP
📖 第 1 页 / 共 5 页
字号:
//
//  Copyright (c) 2000-2002
//  Joerg Walter, Mathias Koch
//
//  Permission to use, copy, modify, distribute and sell this software
//  and its documentation for any purpose is hereby granted without fee,
//  provided that the above copyright notice appear in all copies and
//  that both that copyright notice and this permission notice appear
//  in supporting documentation.  The authors make no representations
//  about the suitability of this software for any purpose.
//  It is provided "as is" without express or implied warranty.
//
//  The authors gratefully acknowledge the support of
//  GeNeSys mbH & Co. KG in producing this work.
//

#ifndef _BOOST_UBLAS_MATRIX_
#define _BOOST_UBLAS_MATRIX_

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix_expression.hpp>
#include <boost/numeric/ublas/detail/matrix_assign.hpp>

// Iterators based on ideas of Jeremy Siek

namespace boost { namespace numeric { namespace ublas {

    namespace detail {
        using namespace boost::numeric::ublas;

        // Matrix resizing algorithm
        template <class L, class M>
        BOOST_UBLAS_INLINE
        void matrix_resize_preserve (M& m, M& temporary) {
            typedef L layout_type;
            typedef typename M::size_type size_type;
            const size_type msize1 (m.size1 ());        // original size
            const size_type msize2 (m.size2 ());
            const size_type size1 (temporary.size1 ());    // new size is specified by temporary
            const size_type size2 (temporary.size2 ());
            // Common elements to preserve
            const size_type size1_min = (std::min) (size1, msize1);
            const size_type size2_min = (std::min) (size2, msize2);
            // Order loop for i-major and j-minor sizes
            const size_type i_size = layout_type::size1 (size1_min, size2_min);
            const size_type j_size = layout_type::size2 (size1_min, size2_min);
            for (size_type i = 0; i != i_size; ++i) {    // indexing copy over major
                for (size_type j = 0; j != j_size; ++j) {
                    const size_type element1 = layout_type::element1(i,i_size, j,j_size);
                    const size_type element2 = layout_type::element2(i,i_size, j,j_size);
                    temporary.data () [layout_type::element (element1, size1, element2, size2)] =
                            m.data() [layout_type::element (element1, msize1, element2, msize2)];
                }
            }
            m.assign_temporary (temporary);
        }
    }


    // Array based matrix class
    template<class T, class L, class A>
    class matrix:
        public matrix_container<matrix<T, L, A> > {

        typedef T *pointer;
        typedef L layout_type;
        typedef matrix<T, L, A> self_type;
    public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
        using matrix_container<self_type>::operator ();
#endif
        typedef typename A::size_type size_type;
        typedef typename A::difference_type difference_type;
        typedef T value_type;
        typedef const T &const_reference;
        typedef T &reference;
        typedef A array_type;
        typedef const matrix_reference<const self_type> const_closure_type;
        typedef matrix_reference<self_type> closure_type;
        typedef vector<T, A> vector_temporary_type;
        typedef self_type matrix_temporary_type;
        typedef dense_tag storage_category;
        // This could be better for performance,
        // typedef typename unknown_orientation_tag orientation_category;
        // but others depend on the orientation information...
        typedef typename L::orientation_category orientation_category;

        // Construction and destruction
        BOOST_UBLAS_INLINE
        matrix ():
            matrix_container<self_type> (),
            size1_ (0), size2_ (0), data_ () {}
        BOOST_UBLAS_INLINE
        matrix (size_type size1, size_type size2):
            matrix_container<self_type> (),
            size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2)) {
        }
        BOOST_UBLAS_INLINE
        matrix (size_type size1, size_type size2, const array_type &data):
            matrix_container<self_type> (),
            size1_ (size1), size2_ (size2), data_ (data) {}
        BOOST_UBLAS_INLINE
        matrix (const matrix &m):
            matrix_container<self_type> (),
            size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}
        template<class AE>
        BOOST_UBLAS_INLINE
        matrix (const matrix_expression<AE> &ae):
            matrix_container<self_type> (),
            size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (layout_type::storage_size (size1_, size2_)) {
            matrix_assign<scalar_assign> (*this, ae);
        }

        // Accessors
        BOOST_UBLAS_INLINE
        size_type size1 () const {
            return size1_;
        }
        BOOST_UBLAS_INLINE
        size_type size2 () const {
            return size2_;
        }

        // Storage accessors
        BOOST_UBLAS_INLINE
        const array_type &data () const {
            return data_;
        }
        BOOST_UBLAS_INLINE
        array_type &data () {
            return data_;
        }

        // Resizing
        BOOST_UBLAS_INLINE
        void resize (size_type size1, size_type size2, bool preserve = true) {
            if (preserve) {
                self_type temporary (size1, size2);
                detail::matrix_resize_preserve<layout_type> (*this, temporary);
            }
            else {
                data ().resize (layout_type::storage_size (size1, size2));
                size1_ = size1;
                size2_ = size2;
            }
        }

        // Element access
        BOOST_UBLAS_INLINE
        const_reference operator () (size_type i, size_type j) const {
            return data () [layout_type::element (i, size1_, j, size2_)];
        }
        BOOST_UBLAS_INLINE
        reference at_element (size_type i, size_type j) {
            return data () [layout_type::element (i, size1_, j, size2_)];
        }
        BOOST_UBLAS_INLINE
        reference operator () (size_type i, size_type j) {
            return at_element (i, j);
        }

        // Element assignment
        BOOST_UBLAS_INLINE
        reference insert_element (size_type i, size_type j, const_reference t) {
            return (at_element (i, j) = t);
        }
        void erase_element (size_type i, size_type j) {
            at_element (i, j) = value_type/*zero*/();
        }

        // Zeroing
        BOOST_UBLAS_INLINE
        void clear () {
            std::fill (data ().begin (), data ().end (), value_type/*zero*/());
        }

        // Assignment
        BOOST_UBLAS_INLINE
        matrix &operator = (const matrix &m) {
            size1_ = m.size1_;
            size2_ = m.size2_;
            data () = m.data ();
            return *this;
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        matrix &operator = (const matrix_container<C> &m) {
            resize (m ().size1 (), m ().size2 (), false);
            assign (m);
            return *this;
        }
        BOOST_UBLAS_INLINE
        matrix &assign_temporary (matrix &m) {
            swap (m);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        matrix &operator = (const matrix_expression<AE> &ae) {
            self_type temporary (ae);
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        matrix &assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        matrix& operator += (const matrix_expression<AE> &ae) {
            self_type temporary (*this + ae);
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        matrix &operator += (const matrix_container<C> &m) {
            plus_assign (m);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        matrix &plus_assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_plus_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        matrix& operator -= (const matrix_expression<AE> &ae) {
            self_type temporary (*this - ae);
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        matrix &operator -= (const matrix_container<C> &m) {
            minus_assign (m);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        matrix &minus_assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_minus_assign> (*this, ae);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        matrix& operator *= (const AT &at) {
            matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        matrix& operator /= (const AT &at) {
            matrix_assign_scalar<scalar_divides_assign> (*this, at);
            return *this;
        }

        // Swapping
        BOOST_UBLAS_INLINE
        void swap (matrix &m) {
            if (this != &m) {
                std::swap (size1_, m.size1_);
                std::swap (size2_, m.size2_);
                data ().swap (m.data ());
            }
        }
        BOOST_UBLAS_INLINE
        friend void swap (matrix &m1, matrix &m2) {
            m1.swap (m2);
        }

        // Iterator types
    private:
        // Use the storage array iterator
        typedef typename A::const_iterator const_subiterator_type;
        typedef typename A::iterator subiterator_type;

    public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
        typedef indexed_iterator1<self_type, dense_random_access_iterator_tag> iterator1;
        typedef indexed_iterator2<self_type, dense_random_access_iterator_tag> iterator2;
        typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;
        typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;
#else
        class const_iterator1;
        class iterator1;
        class const_iterator2;
        class iterator2;
#endif
        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
        typedef reverse_iterator_base1<iterator1> reverse_iterator1;
        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
        typedef reverse_iterator_base2<iterator2> reverse_iterator2;

        // Element lookup
        BOOST_UBLAS_INLINE
        const_iterator1 find1 (int /* rank */, size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
            return const_iterator1 (*this, i, j);
#else
            return const_iterator1 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_));
#endif
        }
        BOOST_UBLAS_INLINE
        iterator1 find1 (int /* rank */, size_type i, size_type j) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
            return iterator1 (*this, i, j);
#else
            return iterator1 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_));
#endif
        }
        BOOST_UBLAS_INLINE
        const_iterator2 find2 (int /* rank */, size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
            return const_iterator2 (*this, i, j);
#else
            return const_iterator2 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_));
#endif
        }
        BOOST_UBLAS_INLINE
        iterator2 find2 (int /* rank */, size_type i, size_type j) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
            return iterator2 (*this, i, j);
#else
            return iterator2 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_));
#endif
        }


#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
        class const_iterator1:
            public container_const_reference<matrix>,
            public random_access_iterator_base<dense_random_access_iterator_tag,
                                               const_iterator1, value_type> {
        public:
            typedef typename matrix::value_type value_type;
            typedef typename matrix::difference_type difference_type;
            typedef typename matrix::const_reference reference;
            typedef const typename matrix::pointer pointer;

            typedef const_iterator2 dual_iterator_type;
            typedef const_reverse_iterator2 dual_reverse_iterator_type;

            // Construction and destruction
            BOOST_UBLAS_INLINE

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -