📄 vector_sparse.hpp
字号:
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
subiterator_type it_;
friend class const_iterator;
};
BOOST_UBLAS_INLINE
iterator begin () {
return iterator (*this, data ().begin ());
}
BOOST_UBLAS_INLINE
iterator end () {
return iterator (*this, data ().end ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
typedef reverse_iterator_base<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
private:
size_type size_;
array_type data_;
static const value_type zero_;
};
template<class T, class A>
const typename mapped_vector<T, A>::value_type mapped_vector<T, A>::zero_ = value_type/*zero*/();
// Compressed array based sparse vector class
// Thanks to Kresimir Fresl for extending this to cover different index bases.
template<class T, std::size_t IB, class IA, class TA>
class compressed_vector:
public vector_container<compressed_vector<T, IB, IA, TA> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef compressed_vector<T, IB, IA, TA> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_container<self_type>::operator ();
#endif
// ISSUE require type consistency check
// is_convertable (IA::size_type, TA::size_type)
typedef typename IA::value_type size_type;
typedef typename IA::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
typedef T &reference;
#else
typedef sparse_vector_element<self_type> reference;
#endif
typedef IA index_array_type;
typedef TA value_array_type;
typedef const vector_reference<const self_type> const_closure_type;
typedef vector_reference<self_type> closure_type;
typedef self_type vector_temporary_type;
typedef sparse_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
compressed_vector ():
vector_container<self_type> (),
size_ (0), capacity_ (restrict_capacity (0)), filled_ (0),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
}
explicit BOOST_UBLAS_INLINE
compressed_vector (size_type size, size_type non_zeros = 0):
vector_container<self_type> (),
size_ (size), capacity_ (restrict_capacity (non_zeros)), filled_ (0),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
}
BOOST_UBLAS_INLINE
compressed_vector (const compressed_vector &v):
vector_container<self_type> (),
size_ (v.size_), capacity_ (v.capacity_), filled_ (v.filled_),
index_data_ (v.index_data_), value_data_ (v.value_data_) {
storage_invariants ();
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector (const vector_expression<AE> &ae, size_type non_zeros = 0):
vector_container<self_type> (),
size_ (ae ().size ()), capacity_ (restrict_capacity (non_zeros)), filled_ (0),
index_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
vector_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
return capacity_;
}
BOOST_UBLAS_INLINE
size_type nnz () const {
return filled_;
}
// Storage accessors
BOOST_UBLAS_INLINE
static size_type index_base () {
return IB;
}
BOOST_UBLAS_INLINE
typename index_array_type::size_type filled () const {
return filled_;
}
BOOST_UBLAS_INLINE
const index_array_type &index_data () const {
return index_data_;
}
BOOST_UBLAS_INLINE
const value_array_type &value_data () const {
return value_data_;
}
BOOST_UBLAS_INLINE
void set_filled (const typename index_array_type::size_type & filled) {
filled_ = filled;
storage_invariants ();
}
BOOST_UBLAS_INLINE
index_array_type &index_data () {
return index_data_;
}
BOOST_UBLAS_INLINE
value_array_type &value_data () {
return value_data_;
}
// Resizing
private:
BOOST_UBLAS_INLINE
size_type restrict_capacity (size_type non_zeros) const {
non_zeros = (std::max) (non_zeros, size_type (1));
non_zeros = (std::min) (non_zeros, size_);
return non_zeros;
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size, bool preserve = true) {
// FIXME preserve unimplemented
BOOST_UBLAS_CHECK (!preserve, internal_logic ());
size_ = size;
capacity_ = restrict_capacity (capacity_);
index_data_. resize (capacity_);
value_data_. resize (capacity_);
filled_ = 0;
storage_invariants ();
}
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type non_zeros, bool preserve = true) {
capacity_ = restrict_capacity (non_zeros);
if (preserve) {
index_data_. resize (capacity_, size_type ());
value_data_. resize (capacity_, value_type ());
filled_ = (std::min) (capacity_, filled_);
}
else {
index_data_. resize (capacity_);
value_data_. resize (capacity_);
filled_ = 0;
}
storage_invariants ();
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i) const {
const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return 0;
return &value_data_ [it - index_data_.begin ()];
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return zero_;
return value_data_ [it - index_data_.begin ()];
}
BOOST_UBLAS_INLINE
true_reference ref (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
if (it == index_data_.begin () + filled_ || *it != k_based (i))
return insert_element (i, value_type/*zero*/());
else
return value_data_ [it - index_data_.begin ()];
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
return ref (i) ;
#else
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return reference (*this, i);
#endif
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return (*this) (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return (*this) (i);
}
// Element assignment
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, const_reference t) {
BOOST_UBLAS_CHECK (!find_element (i), bad_index ()); // duplicate element
if (filled_ >= capacity_)
reserve (2 * capacity_, true);
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
// ISSUE max_capacity limit due to difference_type
typename std::iterator_traits<subiterator_type>::difference_type n = it - index_data_.begin ();
BOOST_UBLAS_CHECK (filled_ == 0 || filled_ == typename index_array_type::size_type (n) || *it != k_based (i), internal_logic ()); // duplicate found by lower_bound
++ filled_;
it = index_data_.begin () + n;
std::copy_backward (it, index_data_.begin () + filled_ - 1, index_data_.begin () + filled_);
*it = k_based (i);
typename value_array_type::iterator itt (value_data_.begin () + n);
std::copy_backward (itt, value_data_.begin () + filled_ - 1, value_data_.begin () + filled_);
*itt = t;
storage_invariants ();
return *itt;
}
BOOST_UBLAS_INLINE
void erase_element (size_type i) {
subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
typename std::iterator_traits<subiterator_type>::difference_type n = it - index_data_.begin ();
if (filled_ > typename index_array_type::size_type (n) && *it == k_based (i)) {
std::copy (it + 1, index_data_.begin () + filled_, it);
typename value_array_type::iterator itt (value_data_.begin () + n);
std::copy (itt + 1, value_data_.begin () + filled_, itt);
-- filled_;
}
storage_invariants ();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
filled_ = 0;
storage_invariants ();
}
// Assignment
BOOST_UBLAS_INLINE
compressed_vector &operator = (const compressed_vector &v) {
if (this != &v) {
size_ = v.size_;
capacity_ = v.capacity_;
filled_ = v.filled_;
index_data_ = v.index_data_;
value_data_ = v.value_data_;
}
storage_invariants ();
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
compressed_vector &operator = (const vector_container<C> &v) {
resize (v ().size (), false);
assign (v);
return *this;
}
BOOST_UBLAS_INLINE
compressed_vector &assign_temporary (compressed_vector &v) {
swap (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &operator = (const vector_expression<AE> &ae) {
self_type temporary (ae, capacity_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &assign (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, ae);
return *this;
}
// Computed assignment
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &operator += (const vector_expression<AE> &ae) {
self_type temporary (*this + ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
compressed_vector &operator += (const vector_container<C> &v) {
plus_assign (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &plus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_vector &operator -= (const vector_expression<AE> &ae) {
self_type temporary (*this - ae, capacity_);
return assign_temporary (temporary);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -