⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix_sparse.hpp

📁 support vector clustering for vc++
💻 HPP
📖 第 1 页 / 共 5 页
字号:
        }
        BOOST_UBLAS_INLINE
        array_type &data () {
            return data_;
        }

        // Resizing
    private:
        BOOST_UBLAS_INLINE
        size_type restrict_capacity (size_type non_zeros) const {
            // Guarding against overflow - thanks to Alexei Novakov for the hint.
            // non_zeros = (std::min) (non_zeros, size1_ * size2_);
            if (size1_ > 0 && non_zeros / size1_ >= size2_)
                non_zeros = size1_ * size2_;
            return non_zeros;
        }
    public:
        BOOST_UBLAS_INLINE
        void resize (size_type size1, size_type size2, bool preserve = true) {
            // FIXME preserve unimplemented
            BOOST_UBLAS_CHECK (!preserve, internal_logic ());
            size1_ = size1;
            size2_ = size2;
            data ().clear ();
        }

        // Reserving
        BOOST_UBLAS_INLINE
        void reserve (size_type non_zeros, bool preserve = true) {
            detail::map_reserve (data (), restrict_capacity (non_zeros));
        }

        // Element support
        BOOST_UBLAS_INLINE
        pointer find_element (size_type i, size_type j) {
            return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i, j));
        }
        BOOST_UBLAS_INLINE
        const_pointer find_element (size_type i, size_type j) const {
            const size_type element = layout_type::element (i, size1_, j, size2_);
            const_subiterator_type it (data ().find (element));
            if (it == data ().end ())
                return 0;
            BOOST_UBLAS_CHECK ((*it).first == element, internal_logic ());   // broken map
            return &(*it).second;
        }

        // Element access
        BOOST_UBLAS_INLINE
        const_reference operator () (size_type i, size_type j) const {
            const size_type element = layout_type::element (i, size1_, j, size2_);
            const_subiterator_type it (data ().find (element));
            if (it == data ().end ())
                return zero_;
            BOOST_UBLAS_CHECK ((*it).first == element, internal_logic ());   // broken map
            return (*it).second;
        }
        BOOST_UBLAS_INLINE
        reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
            const size_type element = layout_type::element (i, size1_, j, size2_);
            std::pair<subiterator_type, bool> ii (data ().insert (typename array_type::value_type (element, value_type/*zero*/())));
            BOOST_UBLAS_CHECK ((ii.first)->first == element, internal_logic ());   // broken map
            return (ii.first)->second;
#else
            return reference (*this, i, j);
#endif
        }

        // Element assingment
        BOOST_UBLAS_INLINE
        true_reference insert_element (size_type i, size_type j, const_reference t) {
            BOOST_UBLAS_CHECK (!find_element (i, j), bad_index ());        // duplicate element
            const size_type element = layout_type::element (i, size1_, j, size2_);
            std::pair<subiterator_type, bool> ii (data ().insert (typename array_type::value_type (element, t)));
            BOOST_UBLAS_CHECK ((ii.first)->first == element, internal_logic ());   // broken map
            if (!ii.second)     // existing element
                (ii.first)->second = t;
            return (ii.first)->second;
        }
        BOOST_UBLAS_INLINE
        void erase_element (size_type i, size_type j) {
            subiterator_type it = data ().find (layout_type::element (i, size1_, j, size2_));
            if (it == data ().end ())
                return;
            data ().erase (it);
        }
        
        // Zeroing
        BOOST_UBLAS_INLINE
        void clear () {
            data ().clear ();
        }

        // Assignment
        BOOST_UBLAS_INLINE
        mapped_matrix &operator = (const mapped_matrix &m) {
            if (this != &m) {
                size1_ = m.size1_;
                size2_ = m.size2_;
                data () = m.data ();
            }
            return *this;
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        mapped_matrix &operator = (const matrix_container<C> &m) {
            resize (m ().size1 (), m ().size2 (), false);
            assign (m);
            return *this;
        }
        BOOST_UBLAS_INLINE
        mapped_matrix &assign_temporary (mapped_matrix &m) {
            swap (m);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_matrix &operator = (const matrix_expression<AE> &ae) {
            self_type temporary (ae, detail::map_capacity (data ()));
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_matrix &assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_matrix& operator += (const matrix_expression<AE> &ae) {
            self_type temporary (*this + ae, detail::map_capacity (data ()));
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        mapped_matrix &operator += (const matrix_container<C> &m) {
            plus_assign (m);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_matrix &plus_assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_plus_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_matrix& operator -= (const matrix_expression<AE> &ae) {
            self_type temporary (*this - ae, detail::map_capacity (data ()));
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        mapped_matrix &operator -= (const matrix_container<C> &m) {
            minus_assign (m);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_matrix &minus_assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_minus_assign> (*this, ae);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        mapped_matrix& operator *= (const AT &at) {
            matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        mapped_matrix& operator /= (const AT &at) {
            matrix_assign_scalar<scalar_divides_assign> (*this, at);
            return *this;
        }

        // Swapping
        BOOST_UBLAS_INLINE
        void swap (mapped_matrix &m) {
            if (this != &m) {
                std::swap (size1_, m.size1_);
                std::swap (size2_, m.size2_);
                data ().swap (m.data ());
            }
        }
        BOOST_UBLAS_INLINE
        friend void swap (mapped_matrix &m1, mapped_matrix &m2) {
            m1.swap (m2);
        }

        // Iterator types
    private:
        // Use storage iterator
        typedef typename A::const_iterator const_subiterator_type;
        typedef typename A::iterator subiterator_type;

        BOOST_UBLAS_INLINE
        true_reference at_element (size_type i, size_type j) {
            const size_type element = layout_type::element (i, size1_, j, size2_);
            subiterator_type it (data ().find (element));
            BOOST_UBLAS_CHECK (it != data ().end(), bad_index ());
            BOOST_UBLAS_CHECK ((*it).first == element, internal_logic ());   // broken map
            return it->second;
        }

    public:
        class const_iterator1;
        class iterator1;
        class const_iterator2;
        class iterator2;
        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
        typedef reverse_iterator_base1<iterator1> reverse_iterator1;
        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
        typedef reverse_iterator_base2<iterator2> reverse_iterator2;

        // Element lookup
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.    
        const_iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) const {
            const_subiterator_type it (data ().lower_bound (layout_type::address (i, size1_, j, size2_)));
            const_subiterator_type it_end (data ().end ());
            size_type index1 = size_type (-1);
            size_type index2 = size_type (-1);
            while (rank == 1 && it != it_end) {
                index1 = layout_type::index1 ((*it).first, size1_, size2_);
                index2 = layout_type::index2 ((*it).first, size1_, size2_);
                if (direction > 0) {
                    if ((index1 >= i && index2 == j) || (i >= size1_))
                        break;
                    ++ i;
                } else /* if (direction < 0) */ {
                    if ((index1 <= i && index2 == j) || (i == 0))
                        break;
                    -- i;
                }
                it = data ().lower_bound (layout_type::address (i, size1_, j, size2_));
            }
            if (rank == 1 && index2 != j) {
                if (direction > 0)
                    i = size1_;
                else /* if (direction < 0) */
                    i = 0;
                rank = 0;
            }
            return const_iterator1 (*this, rank, i, j, it);
        }
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.    
        iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) {
            subiterator_type it (data ().lower_bound (layout_type::address (i, size1_, j, size2_)));
            subiterator_type it_end (data ().end ());
            size_type index1 = size_type (-1);
            size_type index2 = size_type (-1);
            while (rank == 1 && it != it_end) {
                index1 = layout_type::index1 ((*it).first, size1_, size2_);
                index2 = layout_type::index2 ((*it).first, size1_, size2_);
                if (direction > 0) {
                    if ((index1 >= i && index2 == j) || (i >= size1_))
                        break;
                    ++ i;
                } else /* if (direction < 0) */ {
                    if ((index1 <= i && index2 == j) || (i == 0))
                        break;
                    -- i;
                }
                it = data ().lower_bound (layout_type::address (i, size1_, j, size2_));
            }
            if (rank == 1 && index2 != j) {
                if (direction > 0)
                    i = size1_;
                else /* if (direction < 0) */
                    i = 0;
                rank = 0;
            }
            return iterator1 (*this, rank, i, j, it);
        }
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.    
        const_iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) const {
            const_subiterator_type it (data ().lower_bound (layout_type::address (i, size1_, j, size2_)));
            const_subiterator_type it_end (data ().end ());
            size_type index1 = size_type (-1);
            size_type index2 = size_type (-1);
            while (rank == 1 && it != it_end) {
                index1 = layout_type::index1 ((*it).first, size1_, size2_);
                index2 = layout_type::index2 ((*it).first, size1_, size2_);
                if (direction > 0) {
                    if ((index2 >= j && index1 == i) || (j >= size2_))
                        break;
                    ++ j;
                } else /* if (direction < 0) */ {
                    if ((index2 <= j && index1 == i) || (j == 0))
                        break;
                    -- j;
                }
                it = data ().lower_bound (layout_type::address (i, size1_, j, size2_));
            }
            if (rank == 1 && index1 != i) {
                if (direction > 0)
                    j = size2_;
                else /* if (direction < 0) */
                    j = 0;
                rank = 0;
            }
            return const_iterator2 (*this, rank, i, j, it);
        }
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.    
        iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) {
            subiterator_type it (data ().lower_bound (layout_type::address (i, size1_, j, size2_)));
            subiterator_type it_end (data ().end ());
            size_type index1 = size_type (-1);
            size_type index2 = size_type (-1);
            while (rank == 1 && it != it_end) {
                index1 = layout_type::index1 ((*it).first, size1_, size2_);
                index2 = layout_type::index2 ((*it).first, size1_, size2_);
                if (direction > 0) {
                    if ((index2 >= j && index1 == i) || (j >= size2_))
                        break;
                    ++ j;
                } else /* if (direction < 0) */ {
                    if ((index2 <= j && index1 == i) || (j == 0))
                        break;
                    -- j;
                }
                it = data ().lower_bound (layout_type::address (i, size1_, j, size2_));
            }
            if (rank == 1 && index1 != i) {
                if (direction > 0)
                    j = size2_;
                else /* if (direction < 0) */
                    j = 0;
                rank = 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -