📄 matrix_assign.hpp
字号:
++ it2;
}
++ it1;
}
} else {
it1 = it1_end;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (m, cm), external_logic ());
#endif
}
// Sparse proxy or functional column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign (M &m, const matrix_expression<E> &e, sparse_proxy_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, typename E::value_type> functor_type;
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typedef typename M::value_type value_type;
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign<scalar_assign> (cm, m, column_major_tag ());
indexing_matrix_assign<F> (cm, e, column_major_tag ());
#endif
detail::make_conformant (m, e, column_major_tag (), conformant_restrict_type ());
typename M::iterator2 it2 (m.begin2 ());
typename M::iterator2 it2_end (m.end2 ());
typename E::const_iterator2 it2e (e ().begin2 ());
typename E::const_iterator2 it2e_end (e ().end2 ());
while (it2 != it2_end && it2e != it2e_end) {
difference_type compare = it2.index2 () - it2e.index2 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
if (it1 != it1_end && it1e != it1e_end) {
size_type it1_index = it1.index1 (), it1e_index = it1e.index1 ();
while (true) {
difference_type compare = it1_index - it1e_index;
if (compare == 0) {
functor_type::apply (*it1, *it1e);
++ it1, ++ it1e;
if (it1 != it1_end && it1e != it1e_end) {
it1_index = it1.index1 ();
it1e_index = it1e.index1 ();
} else
break;
} else if (compare < 0) {
if (!functor_type::computed) {
functor_type::apply (*it1, value_type/*zero*/()); // zeroing
++ it1;
} else
increment (it1, it1_end, - compare);
if (it1 != it1_end)
it1_index = it1.index1 ();
else
break;
} else if (compare > 0) {
increment (it1e, it1e_end, compare);
if (it1e != it1e_end)
it1e_index = it1e.index1 ();
else
break;
}
}
}
if (!functor_type::computed) {
while (it1 != it1_end) { // zeroing
functor_type::apply (*it1, value_type/*zero*/());
++ it1;
}
} else {
it1 = it1_end;
}
++ it2, ++ it2e;
} else if (compare < 0) {
if (!functor_type::computed) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) { // zeroing
functor_type::apply (*it1, value_type/*zero*/());
++ it1;
}
++ it2;
} else {
increment (it2, it2_end, - compare);
}
} else if (compare > 0) {
increment (it2e, it2e_end, compare);
}
}
if (!functor_type::computed) {
while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) { // zeroing
functor_type::apply (*it1, value_type/*zero*/());
++ it1;
}
++ it2;
}
} else {
it2 = it2_end;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (m, cm), external_logic ());
#endif
}
// Dispatcher
template<template <class T1, class T2> class F, class M, class E>
BOOST_UBLAS_INLINE
void matrix_assign (M &m, const matrix_expression<E> &e) {
typedef typename matrix_assign_traits<typename M::storage_category,
F<typename M::reference, typename E::value_type>::computed,
typename E::const_iterator1::iterator_category,
typename E::const_iterator2::iterator_category>::storage_category storage_category;
// give preference to matrix M's orientation if known
typedef typename boost::mpl::if_<boost::is_same<typename M::orientation_category, unknown_orientation_tag>,
typename E::orientation_category ,
typename M::orientation_category >::type orientation_category;
typedef basic_full<typename M::size_type> unrestricted;
matrix_assign<F, unrestricted> (m, e, storage_category (), orientation_category ());
}
template<template <class T1, class T2> class F, class R, class M, class E>
BOOST_UBLAS_INLINE
void matrix_assign (M &m, const matrix_expression<E> &e) {
typedef R conformant_restrict_type;
typedef typename matrix_assign_traits<typename M::storage_category,
F<typename M::reference, typename E::value_type>::computed,
typename E::const_iterator1::iterator_category,
typename E::const_iterator2::iterator_category>::storage_category storage_category;
// give preference to matrix M's orientation if known
typedef typename boost::mpl::if_<boost::is_same<typename M::orientation_category, unknown_orientation_tag>,
typename E::orientation_category ,
typename M::orientation_category >::type orientation_category;
matrix_assign<F, conformant_restrict_type> (m, e, storage_category (), orientation_category ());
}
template<class SC, class RI1, class RI2>
struct matrix_swap_traits {
typedef SC storage_category;
};
template<>
struct matrix_swap_traits<dense_proxy_tag, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct matrix_swap_traits<packed_proxy_tag, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
// Dense (proxy) row major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, dense_proxy_tag, row_major_tag) {
typedef F<typename M::iterator2::reference, typename E::reference> functor_type;
// R unnecessary, make_conformant not required
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typename M::iterator1 it1 (m.begin1 ());
typename E::iterator1 it1e (e ().begin1 ());
difference_type size1 (BOOST_UBLAS_SAME (m.size1 (), size_type (e ().end1 () - it1e)));
while (-- size1 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename E::iterator2 it2e (it1e.begin ());
difference_type size2 (BOOST_UBLAS_SAME (m.size2 (), size_type (it1e.end () - it2e)));
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename E::iterator2 it2e (begin (it1e, iterator1_tag ()));
difference_type size2 (BOOST_UBLAS_SAME (m.size2 (), size_type (end (it1e, iterator1_tag ()) - it2e)));
#endif
while (-- size2 >= 0)
functor_type::apply (*it2, *it2e), ++ it2, ++ it2e;
++ it1, ++ it1e;
}
}
// Dense (proxy) column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, dense_proxy_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, typename E::reference> functor_type;
// R unnecessary, make_conformant not required
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typename M::iterator2 it2 (m.begin2 ());
typename E::iterator2 it2e (e ().begin2 ());
difference_type size2 (BOOST_UBLAS_SAME (m.size2 (), size_type (e ().end2 () - it2e)));
while (-- size2 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename E::iterator1 it1e (it2e.begin ());
difference_type size1 (BOOST_UBLAS_SAME (m.size1 (), size_type (it2e.end () - it1e)));
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename E::iterator1 it1e (begin (it2e, iterator2_tag ()));
difference_type size1 (BOOST_UBLAS_SAME (m.size1 (), size_type (end (it2e, iterator2_tag ()) - it1e)));
#endif
while (-- size1 >= 0)
functor_type::apply (*it1, *it1e), ++ it1, ++ it1e;
++ it2, ++ it2e;
}
}
// Packed (proxy) row major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, packed_proxy_tag, row_major_tag) {
typedef F<typename M::iterator2::reference, typename E::reference> functor_type;
// R unnecessary, make_conformant not required
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typename M::iterator1 it1 (m.begin1 ());
typename E::iterator1 it1e (e ().begin1 ());
difference_type size1 (BOOST_UBLAS_SAME (m.end1 () - it1, e ().end1 () - it1e));
while (-- size1 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename E::iterator2 it2e (it1e.begin ());
difference_type size2 (BOOST_UBLAS_SAME (it1.end () - it2, it1e.end () - it2e));
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename E::iterator2 it2e (begin (it1e, iterator1_tag ()));
difference_type size2 (BOOST_UBLAS_SAME (end (it1, iterator1_tag ()) - it2, end (it1e, iterator1_tag ()) - it2e));
#endif
while (-- size2 >= 0)
functor_type::apply (*it2, *it2e), ++ it2, ++ it2e;
++ it1, ++ it1e;
}
}
// Packed (proxy) column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, packed_proxy_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, typename E::reference> functor_type;
// R unnecessary, make_conformant not required
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -