⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 operation.hpp

📁 support vector clustering for vc++
💻 HPP
📖 第 1 页 / 共 3 页
字号:
        }
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }

    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, TRI,
               dense_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
        size_type size1 (e2 ().size1 ());
        size_type size2 (e2 ().size2 ());
        for (size_type j = 0; j < size2; ++ j)
            for (size_type i = 0; i < size1; ++ i)
                column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }
    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, TRI,
               sparse_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef TRI triangular_restriction;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
        typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
        typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
        while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression2_type::const_iterator1 it1 (it2.begin ());
            typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
            typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
            typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
            while (it1 != it1_end) {
                // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
                matrix_column<expression1_type> mc (e1 (), it1.index1 ());
                typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
                typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
                while (itc != itc_end) {
                    if (triangular_restriction::functor_type ().other (itc.index (), it2.index2 ()))
                        m (itc.index (), it2.index2 ()) += *it1 * *itc;
                    ++ itc;
                }
                ++ it1;
            }
            ++ it2;
        }
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }

    // Dispatcher
    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, TRI, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;
        typedef TRI triangular_restriction;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return axpy_prod (e1, e2, m, triangular_restriction (), storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2, class TRI>
    BOOST_UBLAS_INLINE
    M
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               TRI) {
        typedef M matrix_type;
        typedef TRI triangular_restriction;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        return axpy_prod (e1, e2, m, triangular_restriction (), true);
    }

  /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
          optimized fashion.

          \param e1 the matrix expression \c A
          \param e2 the matrix expression \c X
          \param m  the result matrix \c M
          \param init a boolean parameter

          <tt>axpy_prod(A, X, M, init)</tt> implements the well known
          axpy-product.  Setting \a init to \c true is equivalent to call
          <tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
          defaults to \c true, but this may change in the future.

          Up to now there are no specialisations.
          
          \ingroup blas3

          \internal
          
          template parameters:
          \param M type of the result matrix \c M
          \param E1 type of a matrix expression \c A
          \param E2 type of a matrix expression \c X
  */
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2) {
        typedef M matrix_type;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        return axpy_prod (e1, e2, m, full (), true);
    }


    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m,
              dense_proxy_tag, row_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, row_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
        size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
        for (size_type k = 0; k < size; ++ k) {
            vector<value_type> ce1 (column (e1 (), k));
            vector<value_type> re2 (row (e2 (), k));
            m.plus_assign (outer_prod (ce1, re2));
        }
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }

    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m,
              dense_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#if BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m);
        typedef typename type_traits<value_type>::real_type real_type;
        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
        indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
        size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
        for (size_type k = 0; k < size; ++ k) {
            vector<value_type> ce1 (column (e1 (), k));
            vector<value_type> re2 (row (e2 (), k));
            m.plus_assign (outer_prod (ce1, re2));
        }
#if BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
        return m;
    }

    // Dispatcher

  /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
          optimized fashion.

          \param e1 the matrix expression \c A
          \param e2 the matrix expression \c X
          \param m  the result matrix \c M
          \param init a boolean parameter

          <tt>opb_prod(A, X, M, init)</tt> implements the well known
          axpy-product. Setting \a init to \c true is equivalent to call
          <tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init
          defaults to \c true, but this may change in the future.

          This function may give a speedup if \c A has less columns than
          rows, because the product is computed as a sum of outer
          products.
          
          \ingroup blas3

          \internal
          
          template parameters:
          \param M type of the result matrix \c M
          \param E1 type of a matrix expression \c A
          \param E2 type of a matrix expression \c X
  */
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return opb_prod (e1, e2, m, storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2) {
        typedef M matrix_type;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        return opb_prod (e1, e2, m, true);
    }

}}}

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -