📄 operation.hpp
字号:
for (size_type j = 0; j < e2.filled1 () -1; ++ j) {
size_type begin = e2.index1_data () [j];
size_type end = e2.index1_data () [j + 1];
value_type t (v (j));
for (size_type i = begin; i < end; ++ i)
t += e2.value_data () [i] * e1 () (e2.index2_data () [i]);
v (j) = t;
}
return v;
}
template<class V, class E1, class T2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, row_major, 0, IA2, TA2> &e2,
V &v, row_major_tag) {
typedef typename V::size_type size_type;
for (size_type i = 0; i < e2.filled1 () -1; ++ i) {
size_type begin = e2.index1_data () [i];
size_type end = e2.index1_data () [i + 1];
for (size_type j = begin; j < end; ++ j)
v (e2.index2_data () [j]) += e2.value_data () [j] * e1 () (i);
}
return v;
}
// Dispatcher
template<class V, class E1, class T2, class L2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, L2, 0, IA2, TA2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename L2::orientation_category orientation_category;
if (init)
v.assign (zero_vector<value_type> (e2.size2 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, orientation_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class E1, class T2, class L2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, L2, 0, IA2, TA2> &e2) {
typedef V vector_type;
vector_type v (e2.size2 ());
return axpy_prod (e1, e2, v, true);
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, column_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
while (it2 != it2_end) {
size_type index2 (it2.index2 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator1 it1 (it2.begin ());
typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
v (index2) += *it1 * e1 () (it1.index1 ());
++ it1;
}
++ it2;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, row_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression2_type::const_iterator1 it1 (e2 ().begin1 ());
typename expression2_type::const_iterator1 it1_end (e2 ().end1 ());
while (it1 != it1_end) {
size_type index1 (it1.index1 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator2 it2 (it1.begin ());
typename expression2_type::const_iterator2 it2_end (it1.end ());
#else
typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
v (it2.index2 ()) += *it2 * e1 () (index1);
++ it2;
}
++ it1;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, sparse_bidirectional_iterator_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression1_type::const_iterator it (e1 ().begin ());
typename expression1_type::const_iterator it_end (e1 ().end ());
while (it != it_end) {
v.plus_assign (*it * row (e2 (), it.index ()));
++ it;
}
return v;
}
// Dispatcher
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag) {
typedef typename E2::orientation_category orientation_category;
return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
}
/** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an
optimized fashion.
\param e1 the vector expression \c x
\param e2 the matrix expression \c A
\param v the result vector \c v
\param init a boolean parameter
<tt>axpy_prod(x, A, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a vector expression \c x
\param E2 type of a matrix expression \c A
*/
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename E1::const_iterator::iterator_category iterator_category;
if (init)
v.assign (zero_vector<value_type> (e2 ().size2 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, iterator_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef V vector_type;
vector_type v (e2 ().size2 ());
return axpy_prod (e1, e2, v, true);
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
dense_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
size_type size1 (e1 ().size1 ());
size_type size2 (e1 ().size2 ());
for (size_type i = 0; i < size1; ++ i)
for (size_type j = 0; j < size2; ++ j)
row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
sparse_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator2 it2 (it1.begin ());
typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
// row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));
matrix_row<expression2_type> mr (e2 (), it2.index2 ());
typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
while (itr != itr_end) {
if (triangular_restriction::other (it1.index1 (), itr.index ()))
m (it1.index1 (), itr.index ()) += *it2 * *itr;
++ itr;
}
++ it2;
}
++ it1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -