⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 functional.hpp

📁 support vector clustering for vc++
💻 HPP
📖 第 1 页 / 共 5 页
字号:
    struct vector_scalar_binary_functor {
        typedef std::size_t size_type;
        typedef std::ptrdiff_t difference_type;
        typedef TR value_type;
        typedef TR result_type;
    };

    template<class T1, class T2, class TR>
    struct vector_inner_prod:
        public vector_scalar_binary_functor<T1, T2, TR> {
        typedef typename vector_scalar_binary_functor<T1, T2, TR>::size_type size_type ;
        typedef typename vector_scalar_binary_functor<T1, T2, TR>::difference_type difference_type;
        typedef typename vector_scalar_binary_functor<T1, T2, TR>::value_type value_type;
        typedef typename vector_scalar_binary_functor<T1, T2, TR>::result_type result_type;

        template<class C1, class C2>
        static BOOST_UBLAS_INLINE
        result_type apply (const vector_container<C1> &c1,
                           const vector_container<C2> &c2) {
#ifdef BOOST_UBLAS_USE_SIMD
            using namespace raw;
            size_type size (BOOST_UBLAS_SAME (c1 ().size (), c2 ().size ()));
            const T1 *data1 = data_const (c1 ());
            const T2 *data2 = data_const (c2 ());
            size_type s1 = stride (c1 ());
            size_type s2 = stride (c2 ());
            result_type t = result_type (0);
            if (s1 == 1 && s2 == 1) {
                for (size_type i = 0; i < size; ++ i)
                    t += data1 [i] * data2 [i];
            } else if (s2 == 1) {
                for (size_type i = 0, i1 = 0; i < size; ++ i, i1 += s1)
                    t += data1 [i1] * data2 [i];
            } else if (s1 == 1) {
                for (size_type i = 0, i2 = 0; i < size; ++ i, i2 += s2)
                    t += data1 [i] * data2 [i2];
            } else {
                for (size_type i = 0, i1 = 0, i2 = 0; i < size; ++ i, i1 += s1, i2 += s2)
                    t += data1 [i1] * data2 [i2];
            }
            return t;
#elif defined(BOOST_UBLAS_HAVE_BINDINGS)
            return boost::numeric::bindings::atlas::dot (c1 (), c2 ());
#else
            return apply (static_cast<const vector_expression<C1> > (c1), static_cast<const vector_expression<C2> > (c2));
#endif
        }
        template<class E1, class E2>
        static BOOST_UBLAS_INLINE
        result_type apply (const vector_expression<E1> &e1,
                           const vector_expression<E2> &e2) {
            size_type size (BOOST_UBLAS_SAME (e1 ().size (), e2 ().size ()));
            result_type t = result_type (0);
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
            for (size_type i = 0; i < size; ++ i)
                t += e1 () (i) * e2 () (i);
#else
            size_type i (0);
            DD (size, 4, r, (t += e1 () (i) * e2 () (i), ++ i));
#endif
            return t;
        }
        // Dense case
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (difference_type size, I1 it1, I2 it2) {
            result_type t = result_type (0);
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
            while (-- size >= 0)
                t += *it1 * *it2, ++ it1, ++ it2;
#else
            DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2));
#endif
            return t;
        }
        // Packed case
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end) {
            result_type t = result_type (0);
            difference_type it1_size (it1_end - it1);
            difference_type it2_size (it2_end - it2);
            difference_type diff (0);
            if (it1_size > 0 && it2_size > 0)
                diff = it2.index () - it1.index ();
            if (diff != 0) {
                difference_type size = (std::min) (diff, it1_size);
                if (size > 0) {
                    it1 += size;
                    it1_size -= size;
                    diff -= size;
                }
                size = (std::min) (- diff, it2_size);
                if (size > 0) {
                    it2 += size;
                    it2_size -= size;
                    diff += size;
                }
            }
            difference_type size ((std::min) (it1_size, it2_size));
            while (-- size >= 0)
                t += *it1 * *it2, ++ it1, ++ it2;
            return t;
        }
        // Sparse case
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag) {
            result_type t = result_type (0);
            if (it1 != it1_end && it2 != it2_end) {
                size_type it1_index = it1.index (), it2_index = it2.index ();
                while (true) {
                    difference_type compare = it1_index - it2_index;
                    if (compare == 0) {
                        t += *it1 * *it2, ++ it1, ++ it2;
                        if (it1 != it1_end && it2 != it2_end) {
                            it1_index = it1.index ();
                            it2_index = it2.index ();
                        } else
                            break;
                    } else if (compare < 0) {
                        increment (it1, it1_end, - compare);
                        if (it1 != it1_end)
                            it1_index = it1.index ();
                        else
                            break;
                    } else if (compare > 0) {
                        increment (it2, it2_end, compare);
                        if (it2 != it2_end)
                            it2_index = it2.index ();
                        else
                            break;
                    }
                }
            }
            return t;
        }
    };

    // Matrix functors

    // Binary returning vector
    template<class T1, class T2, class TR>
    struct matrix_vector_binary_functor {
        typedef std::size_t size_type;
        typedef std::ptrdiff_t difference_type;
        typedef TR value_type;
        typedef TR result_type;
    };

    template<class T1, class T2, class TR>
    struct matrix_vector_prod1:
        public matrix_vector_binary_functor<T1, T2, TR> {
        typedef typename matrix_vector_binary_functor<T1, T2, TR>::size_type size_type;
        typedef typename matrix_vector_binary_functor<T1, T2, TR>::difference_type difference_type;
        typedef typename matrix_vector_binary_functor<T1, T2, TR>::value_type value_type;
        typedef typename matrix_vector_binary_functor<T1, T2, TR>::result_type result_type;

        template<class C1, class C2>
        static BOOST_UBLAS_INLINE
        result_type apply (const matrix_container<C1> &c1,
                           const vector_container<C2> &c2,
                           size_type i) {
#ifdef BOOST_UBLAS_USE_SIMD
            using namespace raw;
            size_type size = BOOST_UBLAS_SAME (c1 ().size2 (), c2 ().size ());
            const T1 *data1 = data_const (c1 ()) + i * stride1 (c1 ());
            const T2 *data2 = data_const (c2 ());
            size_type s1 = stride2 (c1 ());
            size_type s2 = stride (c2 ());
            result_type t = result_type (0);
            if (s1 == 1 && s2 == 1) {
                for (size_type j = 0; j < size; ++ j)
                    t += data1 [j] * data2 [j];
            } else if (s2 == 1) {
                for (size_type j = 0, j1 = 0; j < size; ++ j, j1 += s1)
                    t += data1 [j1] * data2 [j];
            } else if (s1 == 1) {
                for (size_type j = 0, j2 = 0; j < size; ++ j, j2 += s2)
                    t += data1 [j] * data2 [j2];
            } else {
                for (size_type j = 0, j1 = 0, j2 = 0; j < size; ++ j, j1 += s1, j2 += s2)
                    t += data1 [j1] * data2 [j2];
            }
            return t;
#elif defined(BOOST_UBLAS_HAVE_BINDINGS)
            return boost::numeric::bindings::atlas::dot (c1 ().row (i), c2 ());
#else
            return apply (static_cast<const matrix_expression<C1> > (c1), static_cast<const vector_expression<C2> > (c2, i));
#endif
        }
        template<class E1, class E2>
        static BOOST_UBLAS_INLINE
        result_type apply (const matrix_expression<E1> &e1,
                                 const vector_expression<E2> &e2,
                           size_type i) {
            size_type size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size ());
            result_type t = result_type (0);
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
            for (size_type j = 0; j < size; ++ j)
                t += e1 () (i, j) * e2 () (j);
#else
            size_type j (0);
            DD (size, 4, r, (t += e1 () (i, j) * e2 () (j), ++ j));
#endif
            return t;
        }
        // Dense case
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (difference_type size, I1 it1, I2 it2) {
            result_type t = result_type (0);
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
            while (-- size >= 0)
                t += *it1 * *it2, ++ it1, ++ it2;
#else
            DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2));
#endif
            return t;
        }
        // Packed case
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end) {
            result_type t = result_type (0);
            difference_type it1_size (it1_end - it1);
            difference_type it2_size (it2_end - it2);
            difference_type diff (0);
            if (it1_size > 0 && it2_size > 0)
                diff = it2.index () - it1.index2 ();
            if (diff != 0) {
                difference_type size = (std::min) (diff, it1_size);
                if (size > 0) {
                    it1 += size;
                    it1_size -= size;
                    diff -= size;
                }
                size = (std::min) (- diff, it2_size);
                if (size > 0) {
                    it2 += size;
                    it2_size -= size;
                    diff += size;
                }
            }
            difference_type size ((std::min) (it1_size, it2_size));
            while (-- size >= 0)
                t += *it1 * *it2, ++ it1, ++ it2;
            return t;
        }
        // Sparse case
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end,
                                 sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag) {
            result_type t = result_type (0);
            if (it1 != it1_end && it2 != it2_end) {
                size_type it1_index = it1.index2 (), it2_index = it2.index ();
                while (true) {
                    difference_type compare = it1_index - it2_index;
                    if (compare == 0) {
                        t += *it1 * *it2, ++ it1, ++ it2;
                        if (it1 != it1_end && it2 != it2_end) {
                            it1_index = it1.index2 ();
                            it2_index = it2.index ();
                        } else
                            break;
                    } else if (compare < 0) {
                        increment (it1, it1_end, - compare);
                        if (it1 != it1_end)
                            it1_index = it1.index2 ();
                        else
                            break;
                    } else if (compare > 0) {
                        increment (it2, it2_end, compare);
                        if (it2 != it2_end)
                            it2_index = it2.index ();
                        else
                            break;
                    }
                }
            }
            return t;
        }
        // Sparse packed case
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &/* it2_end */,
                                 sparse_bidirectional_iterator_tag, packed_random_access_iterator_tag) {
            result_type t = result_type (0);
            while (it1 != it1_end) {
                t += *it1 * it2 () (it1.index2 ());
                ++ it1;
            }
            return t;
        }
        // Packed sparse case
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (I1 it1, const I1 &/* it1_end */, I2 it2, const I2 &it2_end,
                                 packed_random_access_iterator_tag, sparse_bidirectional_iterator_tag) {
            result_type t = result_type (0);
            while (it2 != it2_end) {
                t += it1 () (it1.index1 (), it2.index ()) * *it2;
                ++ it2;
            }
            return t;
        }
        // Another dispatcher
        template<class I1, class I2>
        static BOOST_UBLAS_INLINE
        result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end,
                                 sparse_bidirectional_iterator_tag) {
            typedef typename I1::iterator_category iterator1_category;
            typedef typename I2::iterator_category iterator2_category;
            return apply (it1, it1_end, it2, it2_end, iterator1_category (), iterator2_category ());
        }
    };

    template<class T1, class T2, class TR>
    struct matrix_vector_prod2:
        public matrix_vector_binary_functor<T1, T2, TR> {
        typedef typename matrix_vector_binary_functor<T1, T2, TR>::size_type size_type;
        typedef typename matrix_vector_binary_functor<T1, T2, TR>::difference_type difference_type;
        typedef typename matrix_vector_binary_functor<T1, T2, TR>::value_type value_type;
        typedef typename matrix_vector_binary_functor<T1, T2, TR>::result_type result_type;

        template<class C1, class C2>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -