📄 vector_of_vector.hpp
字号:
//
// Copyright (c) 2003
// Gunter Winkler, Joerg Walter
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. The authors make no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_VECTOR_OF_VECTOR_
#define _BOOST_UBLAS_VECTOR_OF_VECTOR_
#include <boost/type_traits.hpp>
#include <boost/numeric/ublas/storage_sparse.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
// uBLAS sparse vector based sparse matrix class
// FIXME outer vector can be sparse type but it is completely filled
template<class T, class L, class A>
class generalized_vector_of_vector:
public matrix_container<generalized_vector_of_vector<T, L, A> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef L layout_type;
typedef generalized_vector_of_vector<T, L, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
typedef T &reference;
#else
typedef sparse_matrix_element<self_type> reference;
#endif
typedef A array_type;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef typename A::value_type vector_data_value_type;
typedef vector_data_value_type vector_temporary_type;
typedef self_type matrix_temporary_type;
typedef sparse_tag storage_category;
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
generalized_vector_of_vector ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), data_ (1) {
const size_type sizeM = layout_type::size1 (size1_, size2_);
// create size1+1 empty vector elements
data_.insert_element (sizeM, vector_data_value_type ());
storage_invariants ();
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector (size_type size1, size_type size2, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (layout_type::size1 (size1_, size2_) + 1) {
const size_type sizeM = layout_type::size1 (size1_, size2_);
const size_type sizem = layout_type::size2 (size1_, size2_);
for (size_type i = 0; i < sizeM; ++ i) // create size1 vector elements
data_.insert_element (i, vector_data_value_type ()) .resize (sizem, false);
data_.insert_element (sizeM, vector_data_value_type ());
storage_invariants ();
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector (const generalized_vector_of_vector &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {
storage_invariants ();
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector (const matrix_expression<AE> &ae, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (layout_type::size1 (size1_, size2_) + 1) {
const size_type sizeM = layout_type::size1 (size1_, size2_);
const size_type sizem = layout_type::size2 (size1_, size2_);
for (size_type i = 0; i < sizeM; ++ i) // create size1 vector elements
data_.insert_element (i, vector_data_value_type ()) .resize (sizem, false);
data_.insert_element (sizeM, vector_data_value_type ());
storage_invariants ();
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type non_zeros () const {
size_type non_zeros = 0;
for (const_vectoriterator_type itv = data_ ().begin (); itv != data_ ().end (); ++ itv)
non_zeros += (*itv).size ();
return non_zeros;
}
// Storage accessors
BOOST_UBLAS_INLINE
const array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
const size_type oldM = layout_type::size1 (size1_, size2_);
size1_ = size1;
size2_ = size2;
const size_type sizeM = layout_type::size1 (size1_, size2_);
const size_type sizem = layout_type::size2 (size1_, size2_);
data ().resize (sizeM + 1, preserve);
if (preserve) {
for (size_type i = 0; (i <= oldM) && (i < sizeM); ++ i)
ref (data () [i]).resize (sizem, preserve);
for (size_type i = oldM+1; i < sizeM; ++ i) // create new vector elements
data_.insert_element (i, vector_data_value_type ()) .resize (sizem, false);
if (sizeM > oldM) {
data_.insert_element (sizeM, vector_data_value_type ());
} else {
ref (data () [sizeM]).resize (0, false);
}
} else {
for (size_type i = 0; i < sizeM; ++ i)
data_.insert_element (i, vector_data_value_type ()) .resize (sizem, false);
data_.insert_element (sizeM, vector_data_value_type ());
}
storage_invariants ();
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i, size_type j) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i, j));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i, size_type j) const {
const size_type elementM = layout_type::element1 (i, size1_, j, size2_);
const size_type elementm = layout_type::element2 (i, size1_, j, size2_);
// optimise: check the storage_type and index directly if element always exists
if (boost::is_convertible<typename array_type::storage_category, packed_tag>::value) {
return & (data () [elementM] [elementm]);
}
else {
const typename array_type::value_type *pv = data ().find_element (elementM);
if (!pv)
return 0;
return pv->find_element (elementm);
}
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
const_pointer p = find_element (i, j);
// optimise: check the storage_type and index directly if element always exists
if (boost::is_convertible<typename array_type::storage_category, packed_tag>::value) {
BOOST_UBLAS_CHECK (p, internal_logic () );
return *p;
}
else {
if (p)
return *p;
else
return zero_;
}
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
return at_element (i, j);
#else
return reference (*this, i, j);
#endif
}
// Assignment
BOOST_UBLAS_INLINE
generalized_vector_of_vector &operator = (const generalized_vector_of_vector &m) {
if (this != &m) {
size1_ = m.size1_;
size2_ = m.size2_;
data () = m.data ();
}
storage_invariants ();
return *this;
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector &assign_temporary (generalized_vector_of_vector &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (generalized_vector_of_vector &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
data ().swap (m.data ());
}
storage_invariants ();
}
BOOST_UBLAS_INLINE
friend void swap (generalized_vector_of_vector &m1, generalized_vector_of_vector &m2) {
m1.swap (m2);
}
// Sorting
void sort () {
vectoriterator_type itv (data ().begin ());
vectoriterator_type itv_end (data ().end ());
while (itv != itv_end) {
(*itv).sort ();
++ itv;
}
}
// Element insertion and erasure
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, const_reference t) {
const size_type elementM = layout_type::element1 (i, size1_, j, size2_);
const size_type elementm = layout_type::element2 (i, size1_, j, size2_);
vector_data_value_type& vd (ref (data () [elementM]));
storage_invariants ();
return vd.insert_element (elementm, t);
}
BOOST_UBLAS_INLINE
void append_element (size_type i, size_type j, const_reference t) {
const size_type elementM = layout_type::element1 (i, size1_, j, size2_);
const size_type elementm = layout_type::element2 (i, size1_, j, size2_);
vector_data_value_type& vd (ref (data () [elementM]));
storage_invariants ();
return vd.append_element (elementm, t);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -