📄 octonion.hpp
字号:
\
return(*this); \
}
#define BOOST_OCTONION_MEMBER_MUL_GENERATOR_2(type) \
octonion<type> & operator *= (::std::complex<type> const & rhs) \
{ \
type ar = rhs.real(); \
type br = rhs.imag(); \
\
type at = +a*ar-b*br; \
type bt = +a*br+b*ar; \
type ct = +c*ar+d*br; \
type dt = -c*br+d*ar; \
type et = +e*ar+f*br; \
type ft = -e*br+f*ar; \
type gt = +g*ar-h*br; \
type ht = +g*br+h*ar; \
\
a = at; \
b = bt; \
c = ct; \
d = dt; \
e = et; \
f = ft; \
g = gt; \
h = ht; \
\
return(*this); \
}
#define BOOST_OCTONION_MEMBER_MUL_GENERATOR_3(type) \
octonion<type> & operator *= (::boost::math::quaternion<type> const & rhs) \
{ \
type ar = rhs.R_component_1(); \
type br = rhs.R_component_2(); \
type cr = rhs.R_component_2(); \
type dr = rhs.R_component_2(); \
\
type at = +a*ar-b*br-c*cr-d*dr; \
type bt = +a*br+b*ar+c*dr-d*cr; \
type ct = +a*cr-b*dr+c*ar+d*br; \
type dt = +a*dr+b*cr-c*br+d*ar; \
type et = +e*ar+f*br+g*cr+h*dr; \
type ft = -e*br+f*ar-g*dr+h*cr; \
type gt = -e*cr+f*dr+g*ar-h*br; \
type ht = -e*dr-f*cr+g*br+h*ar; \
\
a = at; \
b = bt; \
c = ct; \
d = dt; \
e = et; \
f = ft; \
g = gt; \
h = ht; \
\
return(*this); \
}
#define BOOST_OCTONION_MEMBER_MUL_GENERATOR_4(type) \
template<typename X> \
octonion<type> & operator *= (octonion<X> const & rhs) \
{ \
type ar = static_cast<type>(rhs.R_component_1()); \
type br = static_cast<type>(rhs.R_component_2()); \
type cr = static_cast<type>(rhs.R_component_3()); \
type dr = static_cast<type>(rhs.R_component_4()); \
type er = static_cast<type>(rhs.R_component_5()); \
type fr = static_cast<type>(rhs.R_component_6()); \
type gr = static_cast<type>(rhs.R_component_7()); \
type hr = static_cast<type>(rhs.R_component_8()); \
\
type at = +a*ar-b*br-c*cr-d*dr-e*er-f*fr-g*gr-h*hr; \
type bt = +a*br+b*ar+c*dr-d*cr+e*fr-f*er-g*hr+h*gr; \
type ct = +a*cr-b*dr+c*ar+d*br+e*gr+f*hr-g*er-h*fr; \
type dt = +a*dr+b*cr-c*br+d*ar+e*hr-f*gr+g*fr-h*er; \
type et = +a*er-b*fr-c*gr-d*hr+e*ar+f*br+g*cr+h*dr; \
type ft = +a*fr+b*er-c*hr+d*gr-e*br+f*ar-g*dr+h*cr; \
type gt = +a*gr+b*hr+c*er-d*fr-e*cr+f*dr+g*ar-h*br; \
type ht = +a*hr-b*gr+c*fr+d*er-e*dr-f*cr+g*br+h*ar; \
\
a = at; \
b = bt; \
c = ct; \
d = dt; \
e = et; \
f = ft; \
g = gt; \
h = ht; \
\
return(*this); \
}
// There is quite a lot of repetition in the code below. This is intentional.
// The last conditional block is the normal form, and the others merely
// consist of workarounds for various compiler deficiencies. Hopefuly, when
// more compilers are conformant and we can retire support for those that are
// not, we will be able to remove the clutter. This is makes the situation
// (painfully) explicit.
#define BOOST_OCTONION_MEMBER_DIV_GENERATOR_1(type) \
octonion<type> & operator /= (type const & rhs) \
{ \
a /= rhs; \
b /= rhs; \
c /= rhs; \
d /= rhs; \
\
return(*this); \
}
#if defined(__GNUC__) && (__GNUC__ < 3)
#define BOOST_OCTONION_MEMBER_DIV_GENERATOR_2(type) \
octonion<type> & operator /= (::std::complex<type> const & rhs) \
{ \
using ::std::valarray; \
\
valarray<type> tr(2); \
\
tr[0] = rhs.real(); \
tr[1] = rhs.imag(); \
\
type mixam = (BOOST_GET_VALARRAY(type,static_cast<type>(1)/abs(tr)).max)(); \
\
tr *= mixam; \
\
valarray<type> tt(8); \
\
tt[0] = +a*tr[0]-b*tr[1]; \
tt[1] = -a*tr[1]+b*tr[0]; \
tt[2] = +c*tr[0]-d*tr[1]; \
tt[3] = +c*tr[1]+d*tr[0]; \
tt[4] = +e*tr[0]-f*tr[1]; \
tt[5] = +e*tr[1]+f*tr[0]; \
tt[6] = +g*tr[0]+h*tr[1]; \
tt[7] = +g*tr[1]+h*tr[0]; \
\
tr *= tr; \
\
tt *= (mixam/tr.sum()); \
\
a = tt[0]; \
b = tt[1]; \
c = tt[2]; \
d = tt[3]; \
e = tt[4]; \
f = tt[5]; \
g = tt[6]; \
h = tt[7]; \
\
return(*this); \
}
#elif defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
#define BOOST_OCTONION_MEMBER_DIV_GENERATOR_2(type) \
octonion<type> & operator /= (::std::complex<type> const & rhs) \
{ \
using ::std::valarray; \
using ::std::abs; \
\
valarray<type> tr(2); \
\
tr[0] = rhs.real(); \
tr[1] = rhs.imag(); \
\
type mixam = static_cast<type>(1)/(abs(tr).max)(); \
\
tr *= mixam; \
\
valarray<type> tt(8); \
\
tt[0] = +a*tr[0]-b*tr[1]; \
tt[1] = -a*tr[1]+b*tr[0]; \
tt[2] = +c*tr[0]-d*tr[1]; \
tt[3] = +c*tr[1]+d*tr[0]; \
tt[4] = +e*tr[0]-f*tr[1]; \
tt[5] = +e*tr[1]+f*tr[0]; \
tt[6] = +g*tr[0]+h*tr[1]; \
tt[7] = +g*tr[1]+h*tr[0]; \
\
tr *= tr; \
\
tt *= (mixam/tr.sum()); \
\
a = tt[0]; \
b = tt[1]; \
c = tt[2]; \
d = tt[3]; \
e = tt[4]; \
f = tt[5]; \
g = tt[6]; \
h = tt[7]; \
\
return(*this); \
}
#else
#define BOOST_OCTONION_MEMBER_DIV_GENERATOR_2(type) \
octonion<type> & operator /= (::std::complex<type> const & rhs) \
{ \
using ::std::valarray; \
\
valarray<type> tr(2); \
\
tr[0] = rhs.real(); \
tr[1] = rhs.imag(); \
\
type mixam = static_cast<type>(1)/(abs(tr).max)(); \
\
tr *= mixam; \
\
valarray<type> tt(8);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -