📄 leda_graph.hpp
字号:
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Copyright 2004 The Trustees of Indiana University.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_LEDA_HPP
#define BOOST_GRAPH_LEDA_HPP
#include <boost/config.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <LEDA/graph.h>
#include <LEDA/node_array.h>
#include <LEDA/node_map.h>
// The functions and classes in this file allows the user to
// treat a LEDA GRAPH object as a boost graph "as is". No
// wrapper is needed for the GRAPH object.
// Remember to define LEDA_PREFIX so that LEDA types such as
// leda_edge show up as "leda_edge" and not just "edge".
// Warning: this implementation relies on partial specialization
// for the graph_traits class (so it won't compile with Visual C++)
// Warning: this implementation is in alpha and has not been tested
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace boost {
struct leda_graph_traversal_category :
public virtual bidirectional_graph_tag,
public virtual adjacency_graph_tag,
public virtual vertex_list_graph_tag { };
template <class vtype, class etype>
struct graph_traits< leda::GRAPH<vtype,etype> > {
typedef leda_node vertex_descriptor;
typedef leda_edge edge_descriptor;
class adjacency_iterator
: public iterator_facade<adjacency_iterator,
leda_node,
bidirectional_traversal_tag,
leda_node,
const leda_node*>
{
public:
explicit adjacency_iterator(leda_edge edge = 0) : base(edge) {}
private:
leda_node dereference() const { return leda::target(base); }
bool equal(const adjacency_iterator& other) const
{ return base == other.base; }
void increment() { base = Succ_Adj_Edge(base, 0); }
void decrement() { base = Pred_Adj_Edge(base, 0); }
leda_edge base;
friend class iterator_core_access;
};
class out_edge_iterator
: public iterator_facade<out_edge_iterator,
leda_edge,
bidirectional_traversal_tag,
const leda_edge&,
const leda_edge*>
{
public:
explicit out_edge_iterator(leda_edge edge = 0) : base(edge) {}
private:
const leda_edge& dereference() const { return base; }
bool equal(const out_edge_iterator& other) const
{ return base == other.base; }
void increment() { base = Succ_Adj_Edge(base, 0); }
void decrement() { base = Pred_Adj_Edge(base, 0); }
leda_edge base;
friend class iterator_core_access;
};
class in_edge_iterator
: public iterator_facade<in_edge_iterator,
leda_edge,
bidirectional_traversal_tag,
const leda_edge&,
const leda_edge*>
{
public:
explicit in_edge_iterator(leda_edge edge = 0) : base(edge) {}
private:
const leda_edge& dereference() const { return base; }
bool equal(const in_edge_iterator& other) const
{ return base == other.base; }
void increment() { base = Succ_Adj_Edge(base, 1); }
void decrement() { base = Pred_Adj_Edge(base, 1); }
leda_edge base;
friend class iterator_core_access;
};
class vertex_iterator
: public iterator_facade<vertex_iterator,
leda_node,
bidirectional_traversal_tag,
const leda_node&,
const leda_node*>
{
public:
vertex_iterator(leda_node node = 0,
const leda::GRAPH<vtype, etype>* g = 0)
: base(node), g(g) {}
private:
const leda_node& dereference() const { return base; }
bool equal(const vertex_iterator& other) const
{ return base == other.base; }
void increment() { base = g->succ_node(base); }
void decrement() { base = g->pred_node(base); }
leda_node base;
const leda::GRAPH<vtype, etype>* g;
friend class iterator_core_access;
};
typedef directed_tag directed_category;
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
typedef leda_graph_traversal_category traversal_category;
typedef int vertices_size_type;
typedef int edges_size_type;
typedef int degree_size_type;
};
template <class vtype, class etype>
struct vertex_property< leda::GRAPH<vtype,etype> > {
typedef vtype type;
};
template <class vtype, class etype>
struct edge_property< leda::GRAPH<vtype,etype> > {
typedef etype type;
};
} // namespace boost
#endif
namespace boost {
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
source(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
const leda::GRAPH<vtype,etype>& g)
{
return source(e);
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
target(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
const leda::GRAPH<vtype,etype>& g)
{
return target(e);
}
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator >
vertices(const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator
Iter;
return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) );
}
// no edges(g) function
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator >
out_edges(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
::out_edge_iterator Iter;
return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) );
}
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator >
in_edges(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
::in_edge_iterator Iter;
return std::make_pair( Iter(First_Adj_Edge(u,1)), Iter(0) );
}
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator >
adjacent_vertices(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
::adjacency_iterator Iter;
return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) );
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::vertices_size_type
num_vertices(const leda::GRAPH<vtype,etype>& g)
{
return g.number_of_nodes();
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::edges_size_type
num_edges(const leda::GRAPH<vtype,etype>& g)
{
return g.number_of_edges();
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
out_degree(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>&)
{
return outdeg(u);
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
in_degree(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>&)
{
return indeg(u);
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
degree(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>&)
{
return outdeg(u) + indeg(u);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -