⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 leda_graph.hpp

📁 support vector clustering for vc++
💻 HPP
📖 第 1 页 / 共 2 页
字号:
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Copyright 2004 The Trustees of Indiana University.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_LEDA_HPP
#define BOOST_GRAPH_LEDA_HPP

#include <boost/config.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>

#include <LEDA/graph.h>
#include <LEDA/node_array.h>
#include <LEDA/node_map.h>

// The functions and classes in this file allows the user to
// treat a LEDA GRAPH object as a boost graph "as is". No
// wrapper is needed for the GRAPH object.

// Remember to define LEDA_PREFIX so that LEDA types such as
// leda_edge show up as "leda_edge" and not just "edge".

// Warning: this implementation relies on partial specialization
// for the graph_traits class (so it won't compile with Visual C++)

// Warning: this implementation is in alpha and has not been tested

#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace boost {

  struct leda_graph_traversal_category : 
    public virtual bidirectional_graph_tag,
    public virtual adjacency_graph_tag,
    public virtual vertex_list_graph_tag { };

  template <class vtype, class etype>
  struct graph_traits< leda::GRAPH<vtype,etype> > {
    typedef leda_node vertex_descriptor;
    typedef leda_edge edge_descriptor;

    class adjacency_iterator 
      : public iterator_facade<adjacency_iterator,
                               leda_node,
                               bidirectional_traversal_tag,
                               leda_node,
                               const leda_node*>
    {
    public:
      explicit adjacency_iterator(leda_edge edge = 0) : base(edge) {}

    private:
      leda_node dereference() const { return leda::target(base); }

      bool equal(const adjacency_iterator& other) const
      { return base == other.base; }

      void increment() { base = Succ_Adj_Edge(base, 0); }
      void decrement() { base = Pred_Adj_Edge(base, 0); }

      leda_edge base;

      friend class iterator_core_access;
    };
      
    class out_edge_iterator 
      : public iterator_facade<out_edge_iterator,
                               leda_edge,
                               bidirectional_traversal_tag,
                               const leda_edge&,
                               const leda_edge*>
    {
    public:
      explicit out_edge_iterator(leda_edge edge = 0) : base(edge) {}

    private:
      const leda_edge& dereference() const { return base; }

      bool equal(const out_edge_iterator& other) const
      { return base == other.base; }

      void increment() { base = Succ_Adj_Edge(base, 0); }
      void decrement() { base = Pred_Adj_Edge(base, 0); }

      leda_edge base;

      friend class iterator_core_access;
    };
      
    class in_edge_iterator 
      : public iterator_facade<in_edge_iterator,
                               leda_edge,
                               bidirectional_traversal_tag,
                               const leda_edge&,
                               const leda_edge*>
    {
    public:
      explicit in_edge_iterator(leda_edge edge = 0) : base(edge) {}

    private:
      const leda_edge& dereference() const { return base; }

      bool equal(const in_edge_iterator& other) const
      { return base == other.base; }

      void increment() { base = Succ_Adj_Edge(base, 1); }
      void decrement() { base = Pred_Adj_Edge(base, 1); }

      leda_edge base;

      friend class iterator_core_access;
    };

    class vertex_iterator 
      : public iterator_facade<vertex_iterator,
                               leda_node,
                               bidirectional_traversal_tag,
                               const leda_node&,
                               const leda_node*>
    {
    public:
      vertex_iterator(leda_node node = 0, 
                      const leda::GRAPH<vtype, etype>* g = 0)
        : base(node), g(g) {}

    private:
      const leda_node& dereference() const { return base; }

      bool equal(const vertex_iterator& other) const
      { return base == other.base; }

      void increment() { base = g->succ_node(base); }
      void decrement() { base = g->pred_node(base); }

      leda_node base;
      const leda::GRAPH<vtype, etype>* g;

      friend class iterator_core_access;
    };

    typedef directed_tag directed_category;
    typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
    typedef leda_graph_traversal_category traversal_category;
    typedef int vertices_size_type;
    typedef int edges_size_type;
    typedef int degree_size_type;
  };

  template <class vtype, class etype>
  struct vertex_property< leda::GRAPH<vtype,etype> > {
    typedef vtype type;
  };

  template <class vtype, class etype>
  struct edge_property< leda::GRAPH<vtype,etype> > {
    typedef etype type;
  };

} // namespace boost
#endif

namespace boost {

  template <class vtype, class etype>
  typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
  source(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
         const leda::GRAPH<vtype,etype>& g)
  {
    return source(e);
  }

  template <class vtype, class etype>
  typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
  target(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
         const leda::GRAPH<vtype,etype>& g)
  {
    return target(e);
  }

  template <class vtype, class etype>
  inline std::pair<
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator,
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator >  
  vertices(const leda::GRAPH<vtype,etype>& g)
  {
    typedef typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator
      Iter;
    return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) );
  }

  // no edges(g) function

  template <class vtype, class etype>
  inline std::pair<
    typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator,
    typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator >  
  out_edges(
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
    const leda::GRAPH<vtype,etype>& g)
  {
    typedef typename graph_traits< leda::GRAPH<vtype,etype> >
      ::out_edge_iterator Iter;
    return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) );
  }

  template <class vtype, class etype>
  inline std::pair<
    typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator,
    typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator >  
  in_edges(
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
    const leda::GRAPH<vtype,etype>& g)
  {
    typedef typename graph_traits< leda::GRAPH<vtype,etype> >
      ::in_edge_iterator Iter;
    return std::make_pair( Iter(First_Adj_Edge(u,1)), Iter(0) );
  }

  template <class vtype, class etype>
  inline std::pair<
    typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator,
    typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator >  
  adjacent_vertices(
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
    const leda::GRAPH<vtype,etype>& g)
  {
    typedef typename graph_traits< leda::GRAPH<vtype,etype> >
      ::adjacency_iterator Iter;
    return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) );
  }

  template <class vtype, class etype>
  typename graph_traits< leda::GRAPH<vtype,etype> >::vertices_size_type
  num_vertices(const leda::GRAPH<vtype,etype>& g)
  {
    return g.number_of_nodes();
  }  

  template <class vtype, class etype>
  typename graph_traits< leda::GRAPH<vtype,etype> >::edges_size_type
  num_edges(const leda::GRAPH<vtype,etype>& g)
  {
    return g.number_of_edges();
  }  

  template <class vtype, class etype>
  typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
  out_degree(
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
    const leda::GRAPH<vtype,etype>&)
  {
    return outdeg(u);
  }

  template <class vtype, class etype>
  typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
  in_degree(
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
    const leda::GRAPH<vtype,etype>&)
  {
    return indeg(u);
  }

  template <class vtype, class etype>
  typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
  degree(
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
    const leda::GRAPH<vtype,etype>&)
  {
    return outdeg(u) + indeg(u);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -