📄 adjacency_list.hpp
字号:
bool inserted;
typename Config::EdgeContainer::value_type e(u, v, p);
typename Config::EdgeContainer::iterator p_iter
= graph_detail::push(g.m_edges, e).first;
typename Config::OutEdgeList::iterator i;
boost::tie(i, inserted) = boost::graph_detail::push(g.out_edge_list(u),
StoredEdge(v, p_iter, &g.m_edges));
if (inserted) {
boost::graph_detail::push(g.out_edge_list(v), StoredEdge(u, p_iter, &g.m_edges));
return std::make_pair(edge_descriptor(u, v, &p_iter->get_property()),
true);
} else {
g.m_edges.erase(p_iter);
return std::make_pair
(edge_descriptor(u, v, &i->get_iter()->get_property()), false);
}
}
template <class Config>
inline std::pair<typename Config::edge_descriptor, bool>
add_edge(typename Config::vertex_descriptor u,
typename Config::vertex_descriptor v,
undirected_graph_helper<Config>& g_)
{
typename Config::edge_property_type p;
return add_edge(u, v, p, g_);
}
// O(1)
template <class Config>
inline typename Config::degree_size_type
degree(typename Config::vertex_descriptor u,
const undirected_graph_helper<Config>& g_)
{
typedef typename Config::graph_type Graph;
const Graph& g = static_cast<const Graph&>(g_);
return out_degree(u, g);
}
template <class Config>
inline std::pair<typename Config::in_edge_iterator,
typename Config::in_edge_iterator>
in_edges(typename Config::vertex_descriptor u,
const undirected_graph_helper<Config>& g_)
{
typedef typename Config::graph_type Graph;
const Graph& cg = static_cast<const Graph&>(g_);
Graph& g = const_cast<Graph&>(cg);
typedef typename Config::in_edge_iterator in_edge_iterator;
return
std::make_pair(in_edge_iterator(g.out_edge_list(u).begin(), u),
in_edge_iterator(g.out_edge_list(u).end(), u));
}
template <class Config>
inline typename Config::degree_size_type
in_degree(typename Config::vertex_descriptor u,
const undirected_graph_helper<Config>& g_)
{ return degree(u, g_); }
//=========================================================================
// Bidirectional Graph Helper Class
struct bidir_adj_list_traversal_tag :
public virtual vertex_list_graph_tag,
public virtual incidence_graph_tag,
public virtual adjacency_graph_tag,
public virtual edge_list_graph_tag,
public virtual bidirectional_graph_tag { };
template <class Config>
struct bidirectional_graph_helper
: public directed_edges_helper<Config> {
typedef bidir_adj_list_traversal_tag traversal_category;
};
// Had to make these non-members to avoid accidental instantiation
// on SGI MIPSpro C++
template <class C>
inline typename C::InEdgeList&
in_edge_list(bidirectional_graph_helper<C>&,
typename C::vertex_descriptor v)
{
typename C::stored_vertex* sv = (typename C::stored_vertex*)v;
return sv->m_in_edges;
}
template <class C>
inline const typename C::InEdgeList&
in_edge_list(const bidirectional_graph_helper<C>&,
typename C::vertex_descriptor v) {
typename C::stored_vertex* sv = (typename C::stored_vertex*)v;
return sv->m_in_edges;
}
template <class Predicate, class Config>
inline void
remove_edge_if(Predicate pred, bidirectional_graph_helper<Config>& g_)
{
typedef typename Config::global_edgelist_selector EdgeListS;
BOOST_STATIC_ASSERT((!is_same<EdgeListS, vecS>::value));
typedef typename Config::graph_type graph_type;
graph_type& g = static_cast<graph_type&>(g_);
typename Config::edge_iterator ei, ei_end, next;
tie(ei, ei_end) = edges(g);
for (next = ei; ei != ei_end; ei = next) {
++next;
if (pred(*ei))
remove_edge(*ei, g);
}
}
template <class Config>
inline std::pair<typename Config::in_edge_iterator,
typename Config::in_edge_iterator>
in_edges(typename Config::vertex_descriptor u,
const bidirectional_graph_helper<Config>& g_)
{
typedef typename Config::graph_type graph_type;
const graph_type& cg = static_cast<const graph_type&>(g_);
graph_type& g = const_cast<graph_type&>(cg);
typedef typename Config::in_edge_iterator in_edge_iterator;
return
std::make_pair(in_edge_iterator(in_edge_list(g, u).begin(), u),
in_edge_iterator(in_edge_list(g, u).end(), u));
}
// O(1)
template <class Config>
inline std::pair<typename Config::edge_iterator,
typename Config::edge_iterator>
edges(const bidirectional_graph_helper<Config>& g_)
{
typedef typename Config::graph_type graph_type;
typedef typename Config::edge_iterator edge_iterator;
const graph_type& cg = static_cast<const graph_type&>(g_);
graph_type& g = const_cast<graph_type&>(cg);
return std::make_pair( edge_iterator(g.m_edges.begin()),
edge_iterator(g.m_edges.end()) );
}
//=========================================================================
// Bidirectional Graph Helper Class (with edge properties)
template <class Config>
struct bidirectional_graph_helper_with_property
: public bidirectional_graph_helper<Config>
{
typedef typename Config::graph_type graph_type;
typedef typename Config::out_edge_iterator out_edge_iterator;
std::pair<out_edge_iterator, out_edge_iterator>
get_parallel_edge_sublist(typename Config::edge_descriptor e,
const graph_type& g,
void*)
{ return out_edges(source(e, g), g); }
std::pair<out_edge_iterator, out_edge_iterator>
get_parallel_edge_sublist(typename Config::edge_descriptor e,
const graph_type& g,
setS*)
{ return edge_range(source(e, g), target(e, g), g); }
std::pair<out_edge_iterator, out_edge_iterator>
get_parallel_edge_sublist(typename Config::edge_descriptor e,
const graph_type& g,
multisetS*)
{ return edge_range(source(e, g), target(e, g), g); }
#if !defined BOOST_NO_HASH
std::pair<out_edge_iterator, out_edge_iterator>
get_parallel_edge_sublist(typename Config::edge_descriptor e,
const graph_type& g,
hash_setS*)
{ return edge_range(source(e, g), target(e, g), g); }
#endif
// Placement of these overloaded remove_edge() functions
// inside the class avoids a VC++ bug.
// O(E/V) or O(log(E/V))
void
remove_edge(typename Config::edge_descriptor e)
{
typedef typename Config::global_edgelist_selector EdgeListS;
BOOST_STATIC_ASSERT((!is_same<EdgeListS, vecS>::value));
graph_type& g = static_cast<graph_type&>(*this);
typedef typename Config::edgelist_selector OutEdgeListS;
std::pair<out_edge_iterator, out_edge_iterator> rng =
get_parallel_edge_sublist(e, g, (OutEdgeListS*)(0));
rng.first = std::find(rng.first, rng.second, e);
assert(rng.first != rng.second);
remove_edge(rng.first);
}
inline void
remove_edge(typename Config::out_edge_iterator iter)
{
typedef typename Config::global_edgelist_selector EdgeListS;
BOOST_STATIC_ASSERT((!is_same<EdgeListS, vecS>::value));
typedef typename Config::graph_type graph_type;
graph_type& g = static_cast<graph_type&>(*this);
typename Config::edge_descriptor e = *iter;
typename Config::OutEdgeList& oel = g.out_edge_list(source(e, g));
typename Config::InEdgeList& iel = in_edge_list(g, target(e, g));
typedef typename Config::OutEdgeList::value_type::property_type PType;
PType& p = *(PType*)e.get_property();
detail::remove_directed_edge_dispatch(*iter, iel, p);
g.m_edges.erase(iter.base()->get_iter());
oel.erase(iter.base());
}
};
// O(E/V) for allow_parallel_edge_tag
// O(log(E/V)) for disallow_parallel_edge_tag
template <class Config>
inline void
remove_edge(typename Config::vertex_descriptor u,
typename Config::vertex_descriptor v,
bidirectional_graph_helper_with_property<Config>& g_)
{
typedef typename Config::global_edgelist_selector EdgeListS;
BOOST_STATIC_ASSERT((!is_same<EdgeListS, vecS>::value));
typedef typename Config::graph_type graph_type;
graph_type& g = static_cast<graph_type&>(g_);
typedef typename Config::edge_parallel_category Cat;
detail::remove_edge_and_property(g, g.out_edge_list(u), v, Cat());
detail::erase_from_incidence_list(in_edge_list(g, v), u, Cat());
}
// O(E/V) or O(log(E/V))
template <class EdgeOrIter, class Config>
inline void
remove_edge(EdgeOrIter e,
bidirectional_graph_helper_with_property<Config>& g_)
{
typedef typename Config::global_edgelist_selector EdgeListS;
BOOST_STATIC_ASSERT((!is_same<EdgeListS, vecS>::value));
g_.remove_edge(e);
}
template <class Config, class Predicate>
inline void
remove_out_edge_if(typename Config::vertex_descriptor u, Predicate pred,
bidirectional_graph_helper_with_property<Config>& g_)
{
typedef typename Config::global_edgelist_selector EdgeListS;
BOOST_STATIC_ASSERT((!is_same<EdgeListS, vecS>::value));
typedef typename Config::graph_type graph_type;
typedef typename Config::OutEdgeList::value_type::property_type PropT;
graph_type& g = static_cast<graph_type&>(g_);
typedef typename Config::EdgeIter EdgeIter;
typedef std::vector<EdgeIter> Garbage;
Garbage garbage;
// First remove the edges from the targets' in-edge lists and
// from the graph's edge set list.
typename Config::out_edge_iterator out_i, out_end;
for (tie(out_i, out_end) = out_edges(u, g); out_i != out_end; ++out_i)
if (pred(*out_i)) {
detail::remove_directed_edge_dispatch
(*out_i, in_edge_list(g, target(*out_i, g)),
*(PropT*)(*out_i).get_property());
// Put in garbage to delete later. Will need the properties
// for the remove_if of the out-edges.
garbage.push_back((*out_i.base()).get_iter());
}
// Now remove the edges from this out-edge list.
typename Config::out_edge_iterator first, last;
tie(first, last) = out_edges(u, g);
typedef typename Config::edge_parallel_category Cat;
detail::remove_directed_edge_if_dispatch
(first, last, g.out_edge_list(u), pred, Cat());
// Now delete the edge properties from the g.m_edges list
for (typename Garbage::iterator i = garbage.begin();
i != garbage.end(); ++i)
g.m_edges.erase(*i);
}
template <class Config, class Predicate>
inline void
remove_in_edge_if(typename Config::vertex_descriptor v, Predicate pred,
bidirectional_graph_helper_with_property<Config>& g_)
{
typedef typename Config::global_edgelist_selector EdgeListS;
BOOST_STATIC_ASSERT((!is_same<EdgeListS, vecS>::value));
typedef typename Config::graph_type graph_type;
typedef typename Config::OutEdgeList::value_type::property_type PropT;
graph_type& g = static_cast<graph_type&>(g_);
typedef typename Config::EdgeIter EdgeIter;
typedef std::vector<EdgeIter> Garbage;
Garbage garbage;
// First remove the edges from the sources' out-edge lists and
// from the graph's edge set list.
typename Config::in_edge_iterator in_i, in_end;
for (tie(in_i, in_end) = in_edges(v, g); in_i != in_end; ++in_i)
if (pred(*in_i)) {
typename Config::vertex_descriptor u = source(*in_i, g);
detail::remove_directed_edge_dispatch
(*in_i, g.out_edge_list(u), *(PropT*)(*in_i).get_property());
// Put in garbage to delete later. Will need the properties
// for the remove_if of the out-edges.
garbage.push_back((*in_i.base()).get_iter());
}
// Now remove the edges from this in-edge list.
typename Config::in_edge_iterator first, last;
tie(first, last) = in_edges(v, g);
typedef typename Config::edge_parallel_category Cat;
detail::remove_directed_edge_if_dispatch
(first, last, in_edge_list(g, v), pred, Cat());
// Now delete the edge properties from the g.m_edges list
for (typename Garbage::iterator i = garbage.begin();
i != garbage.end(); ++i)
g.m_edges.erase(*i);
}
// O(1)
template <class Config>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -