⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 haartraining.htm

📁 OpenCV1.0 + C++Builder6 example of finding coners programm. Highlites coners it found in frame.
💻 HTM
字号:
<html>

<head>
<meta http-equiv=Content-Type content="text/html; charset=windows-1251">
<meta name=Generator content="Microsoft Word 11 (filtered)">
<title>Object Detection Using Haar-like Features with Cascade of Boosted
Classifiers</title>
<style>
<!--
 /* Style Definitions */
 p.MsoNormal, li.MsoNormal, div.MsoNormal
	{margin:0in;
	margin-bottom:.0001pt;
	text-align:justify;
	font-size:12.0pt;
	font-family:"Times New Roman";}
h1
	{margin-top:12.0pt;
	margin-right:0in;
	margin-bottom:3.0pt;
	margin-left:0in;
	text-align:justify;
	page-break-after:avoid;
	font-size:16.0pt;
	font-family:Arial;}
h2
	{margin-top:12.0pt;
	margin-right:0in;
	margin-bottom:3.0pt;
	margin-left:0in;
	text-align:justify;
	page-break-after:avoid;
	font-size:14.0pt;
	font-family:Arial;
	font-style:italic;}
h3
	{margin-top:12.0pt;
	margin-right:0in;
	margin-bottom:3.0pt;
	margin-left:0in;
	text-align:justify;
	page-break-after:avoid;
	font-size:13.0pt;
	font-family:Arial;}
span.Typewch
	{font-family:"Courier New";
	font-weight:bold;}
@page Section1
	{size:595.3pt 841.9pt;
	margin:56.7pt 88.0pt 63.2pt 85.05pt;}
div.Section1
	{page:Section1;}
 /* List Definitions */
 ol
	{margin-bottom:0in;}
ul
	{margin-bottom:0in;}
-->
</style>

</head>

<body lang=RU>

<div class=Section1>

<h1><span lang=EN-US>Rapid Object Detection With A Cascade of Boosted
Classifiers Based on Haar-like Features</span></h1>

<h2><span lang=EN-US>Introduction</span></h2>

<p class=MsoNormal><span lang=EN-US>This document describes how to train and
use a cascade of boosted classifiers for rapid object detection. A large set of
over-complete haar-like features provide the basis for the simple individual
classifiers. Examples of object detection tasks are face, eye and nose
detection, as well as logo detection. </span></p>

<p class=MsoNormal><span lang=EN-US>&nbsp;</span></p>

<p class=MsoNormal><span lang=EN-US>The sample detection task in this document
is logo detection, since logo detection does not require the collection of
large set of registered and carefully marked object samples. Instead we assume
that from one prototype image, a very large set of derived object examples can
be derived (</span><span class=Typewch><span lang=EN-US>createsamples</span></span><span
lang=EN-US> utility, see below).</span></p>

<p class=MsoNormal><span lang=EN-US>&nbsp;</span></p>

<p class=MsoNormal><span lang=EN-US>A detailed description of the training/evaluation
algorithm can be found in [1] and [2].</span></p>

<h2><span lang=EN-US>Samples Creation</span></h2>

<p class=MsoNormal><span lang=EN-US>For training a training samples must be
collected. There are two sample types: negative samples and positive samples.
Negative samples correspond to non-object images. Positive samples correspond
to object images.</span></p>

<h3><span lang=EN-US>Negative Samples</span></h3>

<p class=MsoNormal><span lang=EN-US>Negative samples are taken from arbitrary
images. These images must not contain object representations. Negative samples
are passed through background description file. It is a text file in which each
text line contains the filename (relative to the directory of the description
file) of negative sample image. This file must be created manually. Note that
the negative samples and sample images are also called background samples or
background samples images, and are used interchangeably in this document</span></p>

<p class=MsoNormal><span lang=EN-US>&nbsp;</span></p>

<p class=MsoNormal><span lang=EN-US>Example of negative description file:</span></p>

<p class=MsoNormal><span lang=EN-US>&nbsp;</span></p>

<p class=MsoNormal><span lang=EN-US>Directory structure:</span></p>

<p class=MsoNormal><span class=Typewch><span lang=EN-US>/img</span></span></p>

<p class=MsoNormal><span class=Typewch><span lang=EN-US>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -