⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlsqrat.m

📁 least squares method
💻 M
字号:
function [alpha, c] = dlsqrat(t,y,p,q,alpha)

%  [alpha] = dlsqrat(t,y,p,q,alpha)
%
%  A Full Newton non-linear least-squares code for discrete 
%  least-squares rational approximation. This code implements the algorithm
%  described in the paper:
%
% Carlos F. Borges, A Full-Newton Approach to Separable Nonlinear Least
% Squares Problems and its Application to Discrete Least Squares Rational
% Approximation, Electronic Transactions on Numerical Analysis, Volume 35,
% pp.57-68, 2009.
%
% All are welcome to use this code as they wish. I only ask that you cite
% the paper above if you do. 
%
%Inputs:
% - t,y are the data points.
% - p,q are the degrees of the numerator and denominator.
% - alpha (optional) is the starting guess
%
%Outputs:
% - alpha contains the denominator coefficients starting with alpha_1
% - c contains the numerator coefficients starting with c_0
%
%  Please note that the polynomial coefficients are generated in ascending
%  order so if you want to use Matlab's polyval routine to evaluate things
%  you need to flip the c vector, and you need to flip the alpha vector and
%  then append a 1. Here is a code fragment you can use to view the results
%  of the fit:
%
%    cla; 
%    plot(t,y,'b.'); hold on
%    tt = linspace(min(t),max(t),1000)'; 
%    yy = polyval(flipud(c),tt)./polyval([flipud(alpha); 1],tt);
%    plot(tt,yy); hold off;
% 
%
% Copyright (c) 2008 by Carlos F. Borges.  
% All rights reserved.
% begin dlsqrat

% Set the convergence tolerance.
TOLERANCE = 10^(-12);

% N is the Vandermonde that will be used to evaluate the numerator.
N = zeros(length(t),p+1);
N(:,1) = ones(length(t),1);
for k=2:p+1
    N(:,k) = N(:,k-1).*t;
end
% M is the Vandermonde that will be used to evaluate the denominator.
M = zeros(length(t),q);
M(:,1) = t;
for k=2:q
    M(:,k) = M(:,k-1).*t;
end

% If we are not given an initial guess then generate one.
if nargin < 5
    tmp_pade = [N -diag(y)*M]\y;
    alpha = tmp_pade(p+2:end);
end

% Construct the model matrix and compute ancillary quantities.
update(alpha); 

for iter=1:100
    
    % Update the error.
    old_err = err;
    
    % Compute the Jacobian and the Hessian.
    Tmp1 = diag(Py.*D)*M;
    Tmp2 = Q'*diag((Py-r).*D)*M;
    J = Tmp1 - Q*Tmp2;
    H = M'*diag((Py-2*r).*D)*Tmp1 - Tmp2'*Tmp2;
    
    % Compute the gradient.
    gradient = J'*r;
    
    % Compute the Cholesky factorization of H.
    [R, not_PD] = chol(H);
    % If H is not positive definite then regularize and factor
    if not_PD
        R = chol(H - 1.2*min(eig(H))*eye(q));
    end
    
    %Compute the Newton step.
    delta = -R\(R'\gradient);
    
    % Use stepsize control to take a step.
    step_control;
    
    % Convergence testing
    if err > old_err
        disp('Failed to find descending step length.');
        break;
    else
        alpha = new_alpha;
        rel_err = abs(old_err - err)/old_err;
        if rel_err <= TOLERANCE
            break;
        end
    end
    % End convergence testing.

end  %End of main loop.

% Compute the coefficients of the numerator.
c = (diag(D)*N)\y;

% Generate an error message if the algorithm failed to converge.
if rel_err > TOLERANCE
    disp('Algorithm did not converge.');
end

%XXXXXXXXXXXXXXXXX Subroutines XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    function update(alpha)
        % Updates the model matrix and computes ancillary quantities.
        D = 1./(1+M*alpha);         % Compute the denominator.
        [Q R] = qr(diag(D)*N,0);    % Compute the QR factorization of A = D*N
        Py = Q*(Q'*y);              % Compute the projection of y onto the range of A.
        r = y - Py;                 % Compute the residual. 
        err = r'*r;                 % Compute the current squared error.
    end

    function step_control
        % This function implements stepsize control using a simple
        % backtracking scheme from Dennis & Schnabel.
        
        % Try taking a full step.
        new_alpha = alpha + delta;

        % Update the model.
        update(new_alpha);
        
        % If a full step does not sufficiently reduce the error then we 
        % use a backtracking line-search method for step-size control.
        % This involves minimizing a function f(lambda) that interpolates the 
        % computed error (and its derivatives) at different values of lambda.
        f0 = old_err;
        fprime = gradient'*delta;
        steptol = f0 + .0001*fprime;
        if err > steptol

            errs(1) = err; lams(1) = 1;   % We'll need this if further refinement is necessary.

            % We start with a quadratic model at f(0), f'(0), and f(1)
            % and will take the larger of the computed step or 1/10.
            lambda = max([-fprime/(2*(err - f0 - fprime)) .1]);

            new_alpha = alpha + lambda*delta;

            % Update the model matrix and compute ancillary quantities.
            update(new_alpha); 

            % If this doesn't work then we loop with a cubic model at f(0),
            % f'(0), f(lambda), and f(lam2) where the last two are errors at
            % the last two lambda that were tried.
            steptol = f0 + .0001*fprime*lambda;
            while err > steptol

                % Push the current lambda and error to the top of the lams and errs
                % stacks.
                lams = [lambda; lams(1)]; errs = [err; errs(1)];
                rhs = (errs - fprime*lams - [f0 ; f0])./(lams.*lams);
                ab = [lams [1 ; 1]]\rhs;

                lambda = (-ab(2)+sqrt(ab(2)*ab(2) - 3*ab(1)*fprime))/(3*ab(1));

                % It is still important to make certain that the new lambda
                % progresses quickly but not too quickly. So if lambda is less
                % than lam2/10 we just use lam2/10, and if it is larger than
                % lam2/2 then we use lam2/2.
                if lambda < lams(1)/10
                    lambda = lams(1)/10;
                end
                if lambda > lams(1)/2
                    lambda = lams(1)/2;
                end

                new_alpha = alpha + lambda*delta;

                % Update the model matrix and compute ancillary quantities.
                update(new_alpha); 

                steptol = f0 + .0001*fprime*lambda;

            end
        end
    end 

%XXXXXXXXXXXXXXXXX Subroutines End XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end
% End of function.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -