⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bigint.hh

📁 Click is a modular router toolkit. To use it you ll need to know how to compile and install the sof
💻 HH
字号:
#ifndef CLICK_BIGINT_HH#define CLICK_BIGINT_HH 1/* * bigint.hh -- multiple-precision arithmetic * Eddie Kohler and the authors of GMP * * Copyright (c) 2008 Meraki, Inc. * Derived from the GNU Multiple Precision Arithmetic Library, which is * Copyright (c) 2001-2008 Free Software Foundation, Inc. * * This source code is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, version 3. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public * License for more details. * * Using the interfaces provided by this file does not create a derived work. */#include <click/integers.hh>#include <click/string.hh>CLICK_DECLS/** @file <click/bigint.hh> * @brief Simple multiple-precision integer arithmetic. *//** @class Bigint * @brief Template for multiple-precision integer arithmetic. * * The Bigint template provides a couple simple, but useful, functions for * multiple-precision integer arithmetic.  It is a port of a very limited * subset of the GNU Multiple Precision Arithmetic library's mpn functionality * (architecture-generic functions that work on unsigned integers of known * size). * * A multiple-precision integer is an array of "limbs," or machine integers. * The multiply_add() and divide() functions take arrays of limbs as * arguments.  In such arrays, the least significant limb is stored at array * index 0. * * For example, here's Bigint speak for "x = 0x123_4567_89AB_CDEF * 0x45": * @code * // Initialize result * uint32_t x[2] = { 0, 0 }; * // Define multiplicand; note that least significant comes first * uint32_t a[2] = { 0x89ABCDEF, 0x1234567 }; * Bigint<uint32_t>::multiply_add(x, a, 2, 0x45); * @endcode * * Bigint is not optimized for speed. * * Bigint's template parameter is the type of a limb.  Most users will use * bigint, which is equivalent to Bigint<uint32_t>. */template <typename L, typename Lhalf = L>class Bigint { public:    /** @brief Type of a limb, the unit of single arithmetic. */    typedef L limb_type;    /** @brief Type of an arithmetic unit no smaller than one-half limb_type. */    typedef Lhalf half_limb_type;    enum {	limb_bits = sizeof(limb_type) * 8,	half_limb_bits = sizeof(limb_type) * 4    };    enum {	limb_high_bit = ((limb_type) 1 << (limb_bits - 1)),	limb_half = ((limb_type) 1 << half_limb_bits),	limb_low_mask = limb_half - 1    };    /** @brief Return the less significant half of @a x.     * @invariant low(@a x) + ((limb_type) high(@a x) << half_limb_bits) ==     *    @a x */    static inline half_limb_type low(limb_type x) {	return x & limb_low_mask;    }    /** @brief Return the more significant half of @a x. */    static inline half_limb_type high(limb_type x) {	return x >> half_limb_bits;    }    /** @brief Add two-limb integers [@a a1,@a a0] and [@a b1,@a b0], storing     * the result in [@a x1,@a x0].     * @param[out] x1 most significant limb of result     * @param[out] x0 least significant limb of result     * @param a1 most significant limb of addend     * @param a0 least significant limb of addend     * @param b1 most significant limb of addend     * @param b0 least significant limb of addend     *     * Handles carry in the low order limbs. */    static void add(limb_type &x1, limb_type &x0,		    limb_type a1, limb_type a0, limb_type b1, limb_type b0) {	x0 = a0 + b0;	x1 = a1 + b1 + (x0 < a0);    }    /** @brief Multiply one-limb integers @a a and @a b, storing the result in     * [@a x1,@a x0].     * @param[out] x1 most significant limb of result     * @param[out] x0 least significant limb of result     * @param a multiplicand     * @param b multiplicand */    static void multiply(limb_type &x1, limb_type &x0,			 limb_type a, limb_type b) {	half_limb_type al = low(a), ah = high(a);	half_limb_type bl = low(b), bh = high(b);	limb_type r0 = (limb_type) al * bl;	limb_type r3 = (limb_type) ah * bh;	limb_type r1 = (limb_type) ah * bl;	limb_type r2 = (limb_type) al * bh + high(r0) + r1;	if (r2 < r1)	    r3 += limb_half;	x1 = r3 + high(r2);	x0 = (r2 << half_limb_bits) + low(r0);    }    /** @brief Return the inverse of limb @a x.     *     * Returns the limb @a y that is the largest limb not larger than     * (2**(2*limb_bits))/@a x - (2**limb_bits).  If this would yield     * overflow, @a y is the largest possible number (i.e., only ones). */    static limb_type inverse(limb_type x) {	limb_type y1 = ~x, y0 = ~(limb_type) 0;	// now calculate [y1y0] / x	limb_type x1 = high(x), x0 = low(x);	limb_type q1 = y1 / x1;	limb_type r1 = y1 - q1 * x1;	limb_type m = q1 * x0;	r1 = r1 * limb_half | high(y0);	if (r1 < m) {	    --q1, r1 += x;	    if (r1 >= x && r1 < m)		--q1, r1 += x;	}	r1 -= m;	limb_type q0 = r1 / x1;	limb_type r0 = r1 - q0 * x1;	m = q0 * x0;	r0 = r0 * limb_half | low(y0);	if (r0 < m) {	    --q0, r0 += x;	    if (r0 >= x && r0 < m)		--q0, r0 += x;	}	return q1 * limb_half | q0;    }    /** @brief Set @a n-limb integer @a a to the value @a b.     * @param[out] a points to @a n-limb result     * @param n number of limbs in @a a     * @param b input value     * @return carry */    static click_uint_large_t set(limb_type *a, int n, click_uint_large_t b) {	while (n > 0) {	    *a++ = b;	    n--;	    b >>= sizeof(b) * 8;	}	return b;    }    /** @brief Multiply @a n-limb integer @a a by 1-limb integer @a b and add     * the result to @a n-limb integer @a x.     * @param[in,out] x points to @a n-limb addend and result     * @param a points to @a n-limb multiplicand     * @param n number of limbs in @a x and @a a     * @param b 1-limb multiplicand     *     * Like @a x += @a a * @a b.  Both @a x and @a a must have @a n limbs.  It     * is safe for @a x and @a a to point to exactly the same memory, but they     * must not otherwise overlap. */    static limb_type multiply_add(limb_type *x, const limb_type *a, int n,				  limb_type b) {	limb_type carry = 0;	do {	    limb_type x0, x1;	    multiply(x1, x0, *a++, b);	    x0 += carry;	    carry = (x0 < carry) + x1;	    x0 += *x;	    carry += (x0 < *x);	    *x++ = x0;	} while (--n != 0);	return carry;    }    /** @brief Divide @a n-limb integer @a a by 1-limb integer @a b and store     * the result in @a n-limb integer @a x.     * @param[out] x points to @a n-limb result     * @param a points to @a n-limb dividend     * @param n number of limbs in @a x and @a a     * @param b 1-limb divisor     * @return the remainder     *     * Like @a x = @a a / @a b.  Both @a x and @a a must have @a n limbs.  It     * is safe for @a x and @a a to point to exactly the same memory, but they     * must not otherwise overlap. */    static limb_type divide(limb_type *x, const limb_type *a, int n,			    limb_type b) {	x += n - 1;   /* Make x point at most significant quotient limb */	a += n - 1;   /* Make a point at most significant dividend limb */	limb_type r = 0;	if (b & limb_high_bit) {	    /* High quotient limb is 0 or 1, skip a divide step. */	    r = *a;	    *x = (r >= b);	    r -= (b & -*x);	    --x, --a, --n;	    /* Multiply-by-inverse, divisor already normalized. */	    limb_type b_inverse = inverse(b);	    while (n > 0) {		preinverted_divide(*x, r, r, *a, b, b_inverse);		--x, --a, --n;	    }	} else {	    /* Most significant bit of divisor == 0.  */	    /* Skip a division if high < divisor (high quotient 0).  Testing	       here before normalizing will still skip as often as	       possible.  */	    if (*a < b) {		r = *a;		*x = 0;		--x, --a, --n;	    }	    if (n != 0) {		int norm = ffs_msb(b) - 1; // number of most significant 0 bits		b <<= norm;		r <<= norm;		limb_type b_inverse = inverse(b);		limb_type a1 = *a;		r |= (a1 >> (limb_bits - norm));		--a, --n;		while (n > 0) {		    limb_type a0 = *a;		    preinverted_divide(*x, r, r, ((a1 << norm) | (a0 >> (limb_bits - norm))), b, b_inverse);		    --x, --a, --n;		    a1 = a0;		}		preinverted_divide(*x, r, r, a1 << norm, b, b_inverse);		r >>= norm;	    }	}	return r;    }    /** @brief Return a string representation of @a n-limb integer @a x and     * set @a x to 0.     * @param[in,out] x @a n-limb input, set to zero on output     * @param n number of limbs in @a x     * @param base base (between 2 and 36)     * @param uppercase if true, use uppercase letters for digits >= 10 */    static String unparse_clear(limb_type *x, int n, int base = 10, bool uppercase = false) {	// need d chars, min d s.t. 10^d >= 2^(sizeof(limb_type) * 8 * n)	// == min d s.t. d >= sizeof(limb_type) * 8 * n / lg 10	int div = (base >= 16 ? 4 : (base >= 8 ? 3 : 1));	String s = String::make_garbage((n * limb_bits) / div + 1);	char *q = const_cast<char *>(s.end());	assert(base >= 2 && base <= 36);	while (1) {	    while (n > 0 && x[n - 1] == 0)		--n;	    if (n == 0)		break;	    int r = divide(x, x, n, base);	    if (r <= 9)		*--q = '0' + r;	    else if (uppercase)		*--q = 'A' + r - 10;	    else		*--q = 'a' + r - 10;	}	assert(q >= s.begin());	if (q == s.end())	    *--q = '0';	return s.substring(q, s.end());    }  private:    /* Divide the two-limb number in (a1,a0) by b, with b_inverse being the       largest limb not larger than (2**(2*limb_bits))/b - (2**limb_bits).  If       this would yield overflow, b_inverse should be the largest possible       number (i.e., only ones).  For correct operation, the most significant       bit of b has to be set.  Put the quotient in q and the remainder in       r.  */    /* Like udiv_qrnnd_preinv, but branch-free. */    static void preinverted_divide(limb_type &q, limb_type &r,				   limb_type a1, limb_type a0, limb_type b,				   limb_type b_inverse) {	limb_type a0_mask = (a0 & limb_high_bit ? ~(limb_type) 0 : (limb_type) 0);	limb_type a0_adjusted = a0 + (b & a0_mask);	limb_type x1, x0;	multiply(x1, x0, b_inverse, a1 - a0_mask);	add(x1, x0, x1, x0, a1, a0_adjusted);	limb_type q1 = ~x1;	multiply(x1, x0, q1, b);	add(x1, x0, x1, x0, a1, a0);	x1 -= b;	r = x0 + (b & x1);	q = x1 - q1;    }};/** @brief Typical Bigint usage with uint32_t limb_type. */typedef Bigint<uint32_t> bigint;CLICK_ENDDECLS#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -