📄 rfc 2616 (rfc2616) - hypertext transfer protocol -- http-1_1.txt
字号:
14.20 Expect ...................................................126
14.21 Expires ..................................................127
14.22 From .....................................................128
14.23 Host .....................................................128
14.24 If-Match .................................................129
14.25 If-Modified-Since ........................................130
14.26 If-None-Match ............................................132
14.27 If-Range .................................................133
14.28 If-Unmodified-Since ......................................134
14.29 Last-Modified ............................................134
14.30 Location .................................................135
14.31 Max-Forwards .............................................136
14.32 Pragma ...................................................136
14.33 Proxy-Authenticate .......................................137
14.34 Proxy-Authorization ......................................137
14.35 Range ....................................................138
14.35.1 Byte Ranges ...........................................138
14.35.2 Range Retrieval Requests ..............................139
14.36 Referer ..................................................140
14.37 Retry-After ..............................................141
14.38 Server ...................................................141
14.39 TE .......................................................142
14.40 Trailer ..................................................143
14.41 Transfer-Encoding..........................................143
14.42 Upgrade ..................................................144
14.43 User-Agent ...............................................145
14.44 Vary .....................................................145
14.45 Via ......................................................146
14.46 Warning ..................................................148
14.47 WWW-Authenticate .........................................150
15 Security Considerations .......................................150
15.1 Personal Information....................................151
15.1.1 Abuse of Server Log Information .........................151
15.1.2 Transfer of Sensitive Information .......................151
15.1.3 Encoding Sensitive Information in URI's .................152
15.1.4 Privacy Issues Connected to Accept Headers ..............152
15.2 Attacks Based On File and Path Names .......................153
15.3 DNS Spoofing ...............................................154
15.4 Location Headers and Spoofing ..............................154
15.5 Content-Disposition Issues .................................154
15.6 Authentication Credentials and Idle Clients ................155
15.7 Proxies and Caching ........................................155
15.7.1 Denial of Service Attacks on Proxies....................156
16 Acknowledgments .............................................156
17 References ..................................................158
18 Authors' Addresses ..........................................162
19 Appendices ..................................................164
19.1 Internet Media Type message/http and application/http ......164
19.2 Internet Media Type multipart/byteranges ...................165
19.3 Tolerant Applications ......................................166
19.4 Differences Between HTTP Entities and RFC 2045 Entities ....167
19.4.1 MIME-Version ............................................167
19.4.2 Conversion to Canonical Form ............................167
19.4.3 Conversion of Date Formats ..............................168
19.4.4 Introduction of Content-Encoding ........................168
19.4.5 No Content-Transfer-Encoding ............................168
19.4.6 Introduction of Transfer-Encoding .......................169
19.4.7 MHTML and Line Length Limitations .......................169
19.5 Additional Features ........................................169
19.5.1 Content-Disposition .....................................170
19.6 Compatibility with Previous Versions .......................170
19.6.1 Changes from HTTP/1.0 ...................................171
19.6.2 Compatibility with HTTP/1.0 Persistent Connections ......172
19.6.3 Changes from RFC 2068 ...................................172
20 Index .......................................................175
21 Full Copyright Statement ....................................176
1 Introduction
1.1 Purpose
The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. HTTP has been in use by the World-Wide Web global
information initiative since 1990. The first version of HTTP,
referred to as HTTP/0.9, was a simple protocol for raw data transfer
across the Internet. HTTP/1.0, as defined by RFC 1945 [6], improved
the protocol by allowing messages to be in the format of MIME-like
messages, containing metainformation about the data transferred and
modifiers on the request/response semantics. However, HTTP/1.0 does
not sufficiently take into consideration the effects of hierarchical
proxies, caching, the need for persistent connections, or virtual
hosts. In addition, the proliferation of incompletely-implemented
applications calling themselves "HTTP/1.0" has necessitated a
protocol version change in order for two communicating applications
to determine each other's true capabilities.
This specification defines the protocol referred to as "HTTP/1.1".
This protocol includes more stringent requirements than HTTP/1.0 in
order to ensure reliable implementation of its features.
Practical information systems require more functionality than simple
retrieval, including search, front-end update, and annotation. HTTP
allows an open-ended set of methods and headers that indicate the
purpose of a request [47]. It builds on the discipline of reference
provided by the Uniform Resource Identifier (URI) [3], as a location
(URL) [4] or name (URN) [20], for indicating the resource to which a
method is to be applied. Messages are passed in a format similar to
that used by Internet mail [9] as defined by the Multipurpose
Internet Mail Extensions (MIME) [7].
HTTP is also used as a generic protocol for communication between
user agents and proxies/gateways to other Internet systems, including
those supported by the SMTP [16], NNTP [13], FTP [18], Gopher [2],
and WAIS [10] protocols. In this way, HTTP allows basic hypermedia
access to resources available from diverse applications.
1.2 Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [34].
An implementation is not compliant if it fails to satisfy one or more
of the MUST or REQUIRED level requirements for the protocols it
implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocols is said
to be "unconditionally compliant"; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its
protocols is said to be "conditionally compliant."
1.3 Terminology
This specification uses a number of terms to refer to the roles
played by participants in, and objects of, the HTTP communication.
connection
A transport layer virtual circuit established between two programs
for the purpose of communication.
message
The basic unit of HTTP communication, consisting of a structured
sequence of octets matching the syntax defined in section 4 and
transmitted via the connection.
request
An HTTP request message, as defined in section 5.
response
An HTTP response message, as defined in section 6.
resource
A network data object or service that can be identified by a URI,
as defined in section 3.2. Resources may be available in multiple
representations (e.g. multiple languages, data formats, size, and
resolutions) or vary in other ways.
entity
The information transferred as the payload of a request or
response. An entity consists of metainformation in the form of
entity-header fields and content in the form of an entity-body, as
described in section 7.
representation
An entity included with a response that is subject to content
negotiation, as described in section 12. There may exist multiple
representations associated with a particular response status.
content negotiation
The mechanism for selecting the appropriate representation when
servicing a request, as described in section 12. The
representation of entities in any response can be negotiated
(including error responses).
variant
A resource may have one, or more than one, representation(s)
associated with it at any given instant. Each of these
representations is termed a `varriant'. Use of the term `variant'
does not necessarily imply that the resource is subject to content
negotiation.
client
A program that establishes connections for the purpose of sending
requests.
user agent
The client which initiates a request. These are often browsers,
editors, spiders (web-traversing robots), or other end user tools.
server
An application program that accepts connections in order to
service requests by sending back responses. Any given program may
be capable of being both a client and a server; our use of these
terms refers only to the role being performed by the program for a
particular connection, rather than to the program's capabilities
in general. Likewise, any server may act as an origin server,
proxy, gateway, or tunnel, switching behavior based on the nature
of each request.
origin server
The server on which a given resource resides or is to be created.
proxy
An intermediary program which acts as both a server and a client
for the purpose of making requests on behalf of other clients.
Requests are serviced internally or by passing them on, with
possible translation, to other servers. A proxy MUST implement
both the client and server requirements of this specification. A
"transparent proxy" is a proxy that does not modify the request or
response beyond what is required for proxy authentication and
identification. A "non-transparent proxy" is a proxy that modifies
the request or response in order to provide some added service to
the user agent, such as group annotation services, media type
transformation, protocol reduction, or anonymity filtering. Except
where either transparent or non-transparent behavior is explicitly
stated, the HTTP proxy requirements apply to both types of
proxies.
gateway
A server which acts as an intermediary for some other server.
Unlike a proxy, a gateway receives requests as if it were the
origin server for the requested resource; the requesting client
may not be aware that it is communicating with a gateway.
tunnel
An intermediary program which is acting as a blind relay between
two connections. Once active, a tunnel is not considered a party
to the HTTP communication, though the tunnel may have been
initiated by an HTTP request. The tunnel ceases to exist when both
ends of the relayed connections are closed.
cache
A program's local store of response messages and the subsystem
that controls its message storage, retrieval, and deletion. A
cache stores cacheable responses in order to reduce the response
time and network bandwidth consumption on future, equivalent
requests. Any client or server may include a cache, though a cache
cannot be used by a server that is acting as a tunnel.
cacheable
A response is cacheable if a cache is allowed to store a copy of
the response message for use in answering subsequent requests. The
rules for determining the cacheability of HTTP responses are
defined in section 13. Even if a resource is cacheable, there may
be additional constraints on whether a cache can use the cached
copy for a particular request.
first-hand
A response is first-hand if it comes directly and without
unnecessary delay from the origin server, perhaps via one or more
proxies. A response is also first-hand if its validity has just
been checked directly with the origin server.
explicit expiration time
The time at which the origin server intends that an entity should
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -