📄 rfc2988.txt
字号:
RFC 2988 Computing TCP's Retransmission Timer November 2000
When the retransmission timer expires, do the following:
(5.4) Retransmit the earliest segment that has not been acknowledged
by the TCP receiver.
(5.5) The host MUST set RTO <- RTO * 2 ("back off the timer"). The
maximum value discussed in (2.5) above may be used to provide an
upper bound to this doubling operation.
(5.6) Start the retransmission timer, such that it expires after RTO
seconds (for the value of RTO after the doubling operation
outlined in 5.5).
Note that after retransmitting, once a new RTT measurement is
obtained (which can only happen when new data has been sent and
acknowledged), the computations outlined in section 2 are performed,
including the computation of RTO, which may result in "collapsing"
RTO back down after it has been subject to exponential backoff
(rule 5.5).
Note that a TCP implementation MAY clear SRTT and RTTVAR after
backing off the timer multiple times as it is likely that the
current SRTT and RTTVAR are bogus in this situation. Once SRTT and
RTTVAR are cleared they should be initialized with the next RTT
sample taken per (2.2) rather than using (2.3).
6 Security Considerations
This document requires a TCP to wait for a given interval before
retransmitting an unacknowledged segment. An attacker could cause a
TCP sender to compute a large value of RTO by adding delay to a
timed packet's latency, or that of its acknowledgment. However,
the ability to add delay to a packet's latency often coincides with
the ability to cause the packet to be lost, so it is difficult to
see what an attacker might gain from such an attack that could cause
more damage than simply discarding some of the TCP connection's
packets.
The Internet to a considerable degree relies on the correct
implementation of the RTO algorithm (as well as those described in
RFC 2581) in order to preserve network stability and avoid
congestion collapse. An attacker could cause TCP endpoints to
respond more aggressively in the face of congestion by forging
acknowledgments for segments before the receiver has actually
received the data, thus lowering RTO to an unsafe value. But to do
so requires spoofing the acknowledgments correctly, which is
difficult unless the attacker can monitor traffic along the path
between the sender and the receiver. In addition, even if the
Paxson & Allman Standards Track [Page 5]
RFC 2988 Computing TCP's Retransmission Timer November 2000
attacker can cause the sender's RTO to reach too small a value, it
appears the attacker cannot leverage this into much of an attack
(compared to the other damage they can do if they can spoof packets
belonging to the connection), since the sending TCP will still back
off its timer in the face of an incorrectly transmitted packet's
loss due to actual congestion.
Acknowledgments
The RTO algorithm described in this memo was originated by Van
Jacobson in [Jac88].
References
[AP99] Allman, M. and V. Paxson, "On Estimating End-to-End Network
Path Properties", SIGCOMM 99.
[APS99] Allman, M., Paxson V. and W. Stevens, "TCP Congestion
Control", RFC 2581, April 1999.
[Bra89] Braden, R., "Requirements for Internet Hosts --
Communication Layers", STD 3, RFC 1122, October 1989.
[Bra97] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[Jac88] Jacobson, V., "Congestion Avoidance and Control", Computer
Communication Review, vol. 18, no. 4, pp. 314-329, Aug. 1988.
[JK88] Jacobson, V. and M. Karels, "Congestion Avoidance and
Control", ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.
[KP87] Karn, P. and C. Partridge, "Improving Round-Trip Time
Estimates in Reliable Transport Protocols", SIGCOMM 87.
[Pos81] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
September 1981.
Paxson & Allman Standards Track [Page 6]
RFC 2988 Computing TCP's Retransmission Timer November 2000
Author's Addresses
Vern Paxson
ACIRI / ICSI
1947 Center Street
Suite 600
Berkeley, CA 94704-1198
Phone: 510-666-2882
Fax: 510-643-7684
EMail: vern@aciri.org
http://www.aciri.org/vern/
Mark Allman
NASA Glenn Research Center/BBN Technologies
Lewis Field
21000 Brookpark Rd. MS 54-2
Cleveland, OH 44135
Phone: 216-433-6586
Fax: 216-433-8705
EMail: mallman@grc.nasa.gov
http://roland.grc.nasa.gov/~mallman
Paxson & Allman Standards Track [Page 7]
RFC 2988 Computing TCP's Retransmission Timer November 2000
Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Paxson & Allman Standards Track [Page 8]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -