⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kohonennetwork.java

📁 Demonstrates the Kohonen neural network.
💻 JAVA
字号:
/**
 * KohonenNeuralNetwork
 * Copyright 2005 by Jeff Heaton(jeff@jeffheaton.com)
 *
 * Example program from Chapter 6
 * Programming Neural Networks in Java
 * http://www.heatonresearch.com/articles/series/1/
 *
 * This software is copyrighted. You may use it in programs
 * of your own, without restriction, but you may not
 * publish the source code without the author's permission.
 * For more information on distributing this code, please
 * visit:
 *    http://www.heatonresearch.com/hr_legal.php
 *
 * @author Jeff Heaton
 * @version 1.1
 */

public class KohonenNetwork extends Network {

  /**
   * The weights of the output neurons base on the input from the
   * input neurons.
   */
  double outputWeights[][];

  /**
   * The learning method.
   */
  protected int learnMethod = 1;

  /**
   * The learning rate.
   */
  protected double learnRate = 0.5;

  /**
   * Abort if error is beyond this
   */
  protected double quitError = 0.1;

  /**
   * How many retries before quit.
   */
  protected int retries = 10000;

  /**
   * Reduction factor.
   */
  protected double reduction = .99;

  /**
   * The owner object, to report to.
   */
  protected NeuralReportable owner;

  /**
   * Set to true to abort learning.
   */
  public boolean halt = false;

  /**
   * The training set.
   */
  protected TrainingSet train;

  /**
   * The constructor.
   *
   * @param inputCount Number of input neurons
   * @param outputCount Number of output neurons
   * @param owner The owner object, for updates.
   */
  public KohonenNetwork(int inputCount,int outputCount,NeuralReportable owner)
  {
    int n ;

    totalError = 1.0 ;

    this.inputNeuronCount = inputCount;
    this.outputNeuronCount = outputCount;
    this.outputWeights = new double[outputNeuronCount][inputNeuronCount+1];
    this.output = new double[outputNeuronCount];
    this.owner = owner;
  }

  /**
   * Set the training set to use.
   *
   * @param set The training set to use.
   */
  public void setTrainingSet(TrainingSet set)
  {
    train = set;
  }

  /**
   * Copy the weights from this network to another.
   *
   * @param dest The destination for the weights.
   * @param source
   */
  public static void copyWeights( KohonenNetwork dest , KohonenNetwork source )
  {
    for ( int i=0;i<source.outputWeights.length;i++ ) {
      System.arraycopy(source.outputWeights[i],
                       0,
                       dest.outputWeights[i],
                       0,
                       source.outputWeights[i].length);
    }
  }


  /**
   * Clear the weights.
   */
  public void clearWeights()
  {
    totalError = 1.0;
    for ( int y=0;y<outputWeights.length;y++ )
      for ( int x=0;x<outputWeights[0].length;x++ )
        outputWeights[y][x]=0;
  }

  /**
   * Normalize the input.
   *
   * @param input input pattern
   * @param normfac the result
   * @param synth synthetic last input
   */
  void normalizeInput(
                     final double input[] ,
                     double normfac[] ,
                     double synth[]
                     )
  {
    double length, d ;

    length = vectorLength ( input ) ;
// just in case it gets too small
    if ( length < 1.E-30 )
      length = 1.E-30 ;


    normfac[0] = 1.0 / Math.sqrt ( length ) ;
    synth[0] = 0.0 ;


  }

  /**
   * Normalize weights
   *
   * @param w Input weights
   */
  void normalizeWeight( double w[] )
  {
    int i ;
    double len ;

    len = vectorLength ( w ) ;
    // just incase it gets too small
    if ( len < 1.E-30 )
      len = 1.E-30 ;


    len = 1.0 / Math.sqrt ( len ) ;
    for ( i=0 ; i<inputNeuronCount ; i++ )
      w[i] *= len ;
    w[inputNeuronCount] = 0;


  }


  /**
   * Try an input patter. This can be used to present an input pattern
   * to the network. Usually its best to call winner to get the winning
   * neuron though.
   *
   * @param input Input pattern.
   */
  void trial ( double input[] )
  {
    int i ;
    double normfac[]=new double[1], synth[]=new double[1], optr[];

    normalizeInput(input,normfac,synth) ;

    for ( i=0 ; i<outputNeuronCount; i++ ) {
      optr = outputWeights[i];
      output[i] = dotProduct( input , optr ) * normfac[0]
                  + synth[0] * optr[inputNeuronCount] ;
      // Remap to bipolar (-1,1 to 0,1)
      output[i] = 0.5 * (output[i] + 1.0) ;
      // account for rounding
      if ( output[i] > 1.0 )
        output[i] = 1.0 ;
      if ( output[i] < 0.0 )
        output[i] = 0.0 ;
    }
  }


  /**
   * Present an input pattern and get the
   * winning neuron.
   *
   * @param input input pattern
   * @param normfac the result
   * @param synth synthetic last input
   * @return The winning neuron number.
   */
  public int winner(double input[] ,double normfac[] ,double synth[])
  {
    int i, win=0;
    double biggest, optr[];

    normalizeInput( input , normfac , synth ) ;  // Normalize input

    biggest = -1.E30;
    for ( i=0 ; i<outputNeuronCount; i++ ) {
      optr = outputWeights[i];
      output[i] = dotProduct (input , optr ) * normfac[0]
                  + synth[0] * optr[inputNeuronCount] ;
      // Remap to bipolar(-1,1 to 0,1)
      output[i] = 0.5 * (output[i] + 1.0) ;
      if ( output[i] > biggest ) {
        biggest = output[i] ;
        win = i ;
      }
// account for rounding
      if ( output[i] > 1.0 )
        output[i] = 1.0 ;
      if ( output[i] < 0.0 )
        output[i] = 0.0 ;
    }

    return win ;
  }

  /**
   * This method does much of the work of the learning process.
   * This method evaluates the weights against the training
   * set.
   *
   * @param rate learning rate
   * @param learn_method method(0=additive, 1=subtractive)
   * @param won a Holds how many times a given neuron won
   * @param bigerr a returns the error
   * @param correc a returns the correction
   * @param work a work area
   * @exception java.lang.RuntimeException
   */
  void evaluateErrors (
                      double rate ,
                      int learn_method ,
                      int won[],
                      double bigerr[] ,
                      double correc[][] ,
                      double work[])
  throws RuntimeException
  {
    int best, size,tset ;
    double dptr[], normfac[] = new double[1];
    double synth[]=new double[1], cptr[], wptr[], length, diff ;


// reset correction and winner counts

    for ( int y=0;y<correc.length;y++ ) {
      for ( int x=0;x<correc[0].length;x++ ) {
        correc[y][x]=0;
      }
    }

    for ( int i=0;i<won.length;i++ )
      won[i]=0;

    bigerr[0] = 0.0 ;
// loop through all training sets to determine correction
    for ( tset=0 ; tset<train.getTrainingSetCount(); tset++ ) {
      dptr = train.getInputSet(tset);
      best = winner ( dptr , normfac , synth ) ;
      won[best]++;
      wptr = outputWeights[best];
      cptr = correc[best];
      length = 0.0 ;

      for ( int i=0 ; i<inputNeuronCount ; i++ ) {
        diff = dptr[i] * normfac[0] - wptr[i] ;
        length += diff * diff ;
        if ( learn_method!=0 )
          cptr[i] += diff ;
        else
          work[i] = rate * dptr[i] * normfac[0] + wptr[i] ;
      }
      diff = synth[0] - wptr[inputNeuronCount] ;
      length += diff * diff ;
      if ( learn_method!=0 )
        cptr[inputNeuronCount] += diff ;
      else
        work[inputNeuronCount] = rate * synth[0] + wptr[inputNeuronCount] ;

      if ( length > bigerr[0] )
        bigerr[0] = length ;

      if ( learn_method==0 ) {
        normalizeWeight( work ) ;
        for ( int i=0 ; i<=inputNeuronCount ; i++ )
          cptr[i] += work[i] - wptr[i] ;
      }

    }

    bigerr[0] = Math.sqrt ( bigerr[0] ) ;
  }

  /**
   * This method is called at the end of a training iteration.
   * This method adjusts the weights based on the previous trial.
   *
   * @param rate learning rate
   * @param learn_method method(0=additive, 1=subtractive)
   * @param won a holds number of times each neuron won
   * @param bigcorr holds the error
   * @param correc holds the correction
   */
  void adjustWeights (
                     double rate ,
                     int learn_method ,
                     int won[] ,
                     double bigcorr[],
                     double correc[][]
                     )

  {
    double corr, cptr[], wptr[], length, f ;

    bigcorr[0] = 0.0 ;

    for ( int i=0 ; i<outputNeuronCount ; i++ ) {

      if ( won[i]==0 )
        continue ;

      wptr = outputWeights[i];
      cptr = correc[i];

      f = 1.0 / (double) won[i] ;
      if ( learn_method!=0 )
        f *= rate ;

      length = 0.0 ;

      for ( int j=0 ; j<=inputNeuronCount ; j++ ) {
        corr = f * cptr[j] ;
        wptr[j] += corr ;
        length += corr * corr ;
      }

      if ( length > bigcorr[0] )
        bigcorr[0] = length ;
    }
    // scale the correction
    bigcorr[0] = Math.sqrt ( bigcorr[0] ) / rate ;
  }




  /**
   * If no neuron wins, then force a winner.
   *
   * @param won how many times each neuron won
   * @exception java.lang.RuntimeException
   */
  void forceWin(
               int won[]
               )
  throws RuntimeException
  {
    int i, tset, best, size, which=0;
    double dptr[], normfac[]=new double[1];
    double synth[] = new double[1], dist, optr[];

    size = inputNeuronCount + 1 ;

    dist = 1.E30 ;
    for ( tset=0 ; tset<train.getTrainingSetCount() ; tset++ ) {
      dptr = train.getInputSet(tset);
      best = winner ( dptr , normfac , synth ) ;
      if ( output[best] < dist ) {
        dist = output[best] ;
        which = tset ;
      }
    }

    dptr = train.getInputSet(which);
    best = winner ( dptr , normfac , synth ) ;

    dist = -1.e30 ;
    i = outputNeuronCount;
    while ( (i--)>0 ) {
      if ( won[i]!=0 )
        continue ;
      if ( output[i] > dist ) {
        dist = output[i] ;
        which = i ;
      }
    }

    optr = outputWeights[which];

    System.arraycopy(dptr,
                     0,
                     optr,
                     0,
                     dptr.length);

    optr[inputNeuronCount] = synth[0] / normfac[0] ;
    normalizeWeight ( optr ) ;
  }



  /**
   * This method is called to train the network. It can run
   * for a very long time and will report progress back to the
   * owner object.
   *
   * @exception java.lang.RuntimeException
   */
  public void learn ()
  throws RuntimeException
  {
    int i, key, tset,iter,n_retry,nwts;
    int won[],winners ;
    double work[],correc[][],rate,best_err,dptr[];
    double bigerr[] = new double[1] ;
    double bigcorr[] = new double[1];
    KohonenNetwork bestnet;  // Preserve best here

    totalError = 1.0 ;


    for ( tset=0 ; tset<train.getTrainingSetCount(); tset++ ) {
      dptr = train.getInputSet(tset);
      if ( vectorLength( dptr ) < 1.E-30 ) {
        throw(new RuntimeException("Multiplicative normalization has null training case")) ;
      }

    }


    bestnet = new KohonenNetwork(inputNeuronCount,outputNeuronCount,owner) ;

    won = new int[outputNeuronCount];
    correc = new double[outputNeuronCount][inputNeuronCount+1];
    if ( learnMethod==0 )
      work = new double[inputNeuronCount+1];
    else
      work = null ;

    rate = learnRate;

    initialize () ;
    best_err = 1.e30 ;

// main loop:

    n_retry = 0 ;
    for ( iter=0 ; ; iter++ ) {

      evaluateErrors ( rate , learnMethod , won ,
                       bigerr , correc , work ) ;

      totalError = bigerr[0] ;

      if ( totalError < best_err ) {
        best_err = totalError ;
        copyWeights ( bestnet , this ) ;
      }

      winners = 0 ;
      for ( i=0;i<won.length;i++ )
        if ( won[i]!=0 )
          winners++;


      if ( bigerr[0] < quitError )
        break ;


      if ( (winners < outputNeuronCount)  &&
           (winners < train.getTrainingSetCount()) ) {
        forceWin ( won ) ;
        continue ;
      }

      adjustWeights ( rate , learnMethod , won , bigcorr, correc ) ;

      owner.update(n_retry,totalError,best_err);
      if ( halt ) {
        owner.update(n_retry,totalError,best_err);
        break;
      }
      Thread.yield();

      if ( bigcorr[0] < 1E-5 ) {
        if ( ++n_retry > retries )
          break ;
        initialize () ;
        iter = -1 ;
        rate = learnRate ;
        continue ;
      }

      if ( rate > 0.01 )
        rate *= reduction ;

    }

// done

    copyWeights( this , bestnet ) ;

    for ( i=0 ; i<outputNeuronCount ; i++ )
      normalizeWeight ( outputWeights[i] ) ;

    halt = true;
    n_retry++;
    owner.update(n_retry,totalError,best_err);
  }

  /**
   * Called to initialize the Kononen network.
   */
  public void initialize()
  {
    int i ;
    double optr[];

    clearWeights() ;
    randomizeWeights( outputWeights ) ;
    for ( i=0 ; i<outputNeuronCount ; i++ ) {
      optr = outputWeights[i];
      normalizeWeight( optr );
    }
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -