📄 matrix_optimalab.m
字号:
function [a1,segmaX]=matrix_optimalab(a,b,Dab,Wab)
%%%矩阵重复优化的核心计算程序,a是N个未知节点坐标矩阵,b是M个信标节点坐标矩阵,Dab是未知节点和信标节点之间的测
%%%距矩阵,Wab是未知节点和信标节点之间测距的权重函数;a1是根据重复优化公式计算出来的下一个迭代的未知节点坐标
%%%矩阵,segmaX是当前未知节点坐标矩阵a作为定位坐标矩阵和实际的测距的总的平方误差和,也即优化函数的值
%%% 此函数仅根据未知节点和已知节点之间的测距来进行重复优化计算
%%% a(N*K) is the coordinates of the unknown nodes,N:is the number of the
%%% unknown nodes,K: is the dimensional(2 or 3 in fact)
%%% b(M*K) is the coordinates of the beacon nodes,M: is the number of the
%%% beacon nodes
%%% Dab(N*M) is the measured distance matrix between the unknown node and the
%%% beacon node
%%% Wab(N*M) is the weight matrix between the unknown node and the beacon node
%%% a1(N*K) is the returned coordinate matrix according to the input a
%%% segmaX is the error value according to the measured distance Da and the
%%% estimated coordinates
%%% Author: Xie Dongfeng
row_a=size(a,1); %%% row_a=N
row_b=size(b,1); %%% row_b=M
calculated_disab=L2_distance(a',b');
%%% calculated_disab is the distance between the unknown nodes and beacon
%%% nodes by calculating the estimated coordinates
B2X=zeros(row_a,row_a);
B3X=zeros(row_a,row_b);
B4X=zeros(row_b,row_b);
lamata=zeros(row_a,row_b);
for i=1:row_a
for j=1:row_b
if(calculated_disab(i,j)~=0)
lamata(i,j)=Wab(i,j)*Dab(i,j)/calculated_disab(i,j);
end
end
end
for i=1:row_a
for j=1:row_b
B2X(i,i)=B2X(i,i)+lamata(i,j);
end
end
B3X=lamata;
for i=1:row_b
for j=1:row_a
B4X(i,i)=B4X(i,i)+lamata(j,i);
end
end
sita=-2*(trace(a'*B2X*a)-2*trace(a'*B3X*b)+trace(b'*B4X*b));
V2=zeros(row_a,row_a);
V3=zeros(row_a,row_b);
V4=zeros(row_b,row_b);
for i=1:row_a
for j=1:row_b
V2(i,i)=V2(i,i)+Wab(i,j);
end
end
V3=Wab;
for i=1:row_b
for j=1:row_a
V4(i,i)=V4(i,i)+Wab(j,i);
end
end
elta=trace(a'*V2*a)-2*trace(a'*V3*b)+trace(b'*V4*b);
segma=0;
for i=1:row_a
for j=1:row_b
segma=segma+Wab(i,j)*Dab(i,j)*Dab(i,j);
end
end
segmaX=segma+elta+sita;
a1=inv(V2)*(B2X*a+(V3-B3X)*b);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -