⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 prio_tree.c

📁 Lib files of linux kernel
💻 C
字号:
/* * lib/prio_tree.c - priority search tree * * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> * * This file is released under the GPL v2. * * Based on the radix priority search tree proposed by Edward M. McCreight * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 * * 02Feb2004	Initial version */#include <linux/init.h>#include <linux/mm.h>#include <linux/prio_tree.h>/* * A clever mix of heap and radix trees forms a radix priority search tree (PST) * which is useful for storing intervals, e.g, we can consider a vma as a closed * interval of file pages [offset_begin, offset_end], and store all vmas that * map a file in a PST. Then, using the PST, we can answer a stabbing query, * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a * given input interval X (a set of consecutive file pages), in "O(log n + m)" * time where 'log n' is the height of the PST, and 'm' is the number of stored * intervals (vmas) that overlap (map) with the input interval X (the set of * consecutive file pages). * * In our implementation, we store closed intervals of the form [radix_index, * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST * is designed for storing intervals with unique radix indices, i.e., each * interval have different radix_index. However, this limitation can be easily * overcome by using the size, i.e., heap_index - radix_index, as part of the * index, so we index the tree using [(radix_index,size), heap_index]. * * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit * machine, the maximum height of a PST can be 64. We can use a balanced version * of the priority search tree to optimize the tree height, but the balanced * tree proposed by McCreight is too complex and memory-hungry for our purpose. *//* * The following macros are used for implementing prio_tree for i_mmap */#define RADIX_INDEX(vma)  ((vma)->vm_pgoff)#define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)/* avoid overflow */#define HEAP_INDEX(vma)	  ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))static void get_index(const struct prio_tree_root *root,    const struct prio_tree_node *node,    unsigned long *radix, unsigned long *heap){	if (root->raw) {		struct vm_area_struct *vma = prio_tree_entry(		    node, struct vm_area_struct, shared.prio_tree_node);		*radix = RADIX_INDEX(vma);		*heap = HEAP_INDEX(vma);	}	else {		*radix = node->start;		*heap = node->last;	}}static unsigned long index_bits_to_maxindex[BITS_PER_LONG];void __init prio_tree_init(void){	unsigned int i;	for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;	index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;}/* * Maximum heap_index that can be stored in a PST with index_bits bits */static inline unsigned long prio_tree_maxindex(unsigned int bits){	return index_bits_to_maxindex[bits - 1];}/* * Extend a priority search tree so that it can store a node with heap_index * max_heap_index. In the worst case, this algorithm takes O((log n)^2). * However, this function is used rarely and the common case performance is * not bad. */static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,		struct prio_tree_node *node, unsigned long max_heap_index){	struct prio_tree_node *first = NULL, *prev, *last = NULL;	if (max_heap_index > prio_tree_maxindex(root->index_bits))		root->index_bits++;	while (max_heap_index > prio_tree_maxindex(root->index_bits)) {		root->index_bits++;		if (prio_tree_empty(root))			continue;		if (first == NULL) {			first = root->prio_tree_node;			prio_tree_remove(root, root->prio_tree_node);			INIT_PRIO_TREE_NODE(first);			last = first;		} else {			prev = last;			last = root->prio_tree_node;			prio_tree_remove(root, root->prio_tree_node);			INIT_PRIO_TREE_NODE(last);			prev->left = last;			last->parent = prev;		}	}	INIT_PRIO_TREE_NODE(node);	if (first) {		node->left = first;		first->parent = node;	} else		last = node;	if (!prio_tree_empty(root)) {		last->left = root->prio_tree_node;		last->left->parent = last;	}	root->prio_tree_node = node;	return node;}/* * Replace a prio_tree_node with a new node and return the old node */struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,		struct prio_tree_node *old, struct prio_tree_node *node){	INIT_PRIO_TREE_NODE(node);	if (prio_tree_root(old)) {		BUG_ON(root->prio_tree_node != old);		/*		 * We can reduce root->index_bits here. However, it is complex		 * and does not help much to improve performance (IMO).		 */		node->parent = node;		root->prio_tree_node = node;	} else {		node->parent = old->parent;		if (old->parent->left == old)			old->parent->left = node;		else			old->parent->right = node;	}	if (!prio_tree_left_empty(old)) {		node->left = old->left;		old->left->parent = node;	}	if (!prio_tree_right_empty(old)) {		node->right = old->right;		old->right->parent = node;	}	return old;}/* * Insert a prio_tree_node @node into a radix priority search tree @root. The * algorithm typically takes O(log n) time where 'log n' is the number of bits * required to represent the maximum heap_index. In the worst case, the algo * can take O((log n)^2) - check prio_tree_expand. * * If a prior node with same radix_index and heap_index is already found in * the tree, then returns the address of the prior node. Otherwise, inserts * @node into the tree and returns @node. */struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,		struct prio_tree_node *node){	struct prio_tree_node *cur, *res = node;	unsigned long radix_index, heap_index;	unsigned long r_index, h_index, index, mask;	int size_flag = 0;	get_index(root, node, &radix_index, &heap_index);	if (prio_tree_empty(root) ||			heap_index > prio_tree_maxindex(root->index_bits))		return prio_tree_expand(root, node, heap_index);	cur = root->prio_tree_node;	mask = 1UL << (root->index_bits - 1);	while (mask) {		get_index(root, cur, &r_index, &h_index);		if (r_index == radix_index && h_index == heap_index)			return cur;                if (h_index < heap_index ||		    (h_index == heap_index && r_index > radix_index)) {			struct prio_tree_node *tmp = node;			node = prio_tree_replace(root, cur, node);			cur = tmp;			/* swap indices */			index = r_index;			r_index = radix_index;			radix_index = index;			index = h_index;			h_index = heap_index;			heap_index = index;		}		if (size_flag)			index = heap_index - radix_index;		else			index = radix_index;		if (index & mask) {			if (prio_tree_right_empty(cur)) {				INIT_PRIO_TREE_NODE(node);				cur->right = node;				node->parent = cur;				return res;			} else				cur = cur->right;		} else {			if (prio_tree_left_empty(cur)) {				INIT_PRIO_TREE_NODE(node);				cur->left = node;				node->parent = cur;				return res;			} else				cur = cur->left;		}		mask >>= 1;		if (!mask) {			mask = 1UL << (BITS_PER_LONG - 1);			size_flag = 1;		}	}	/* Should not reach here */	BUG();	return NULL;}/* * Remove a prio_tree_node @node from a radix priority search tree @root. The * algorithm takes O(log n) time where 'log n' is the number of bits required * to represent the maximum heap_index. */void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node){	struct prio_tree_node *cur;	unsigned long r_index, h_index_right, h_index_left;	cur = node;	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {		if (!prio_tree_left_empty(cur))			get_index(root, cur->left, &r_index, &h_index_left);		else {			cur = cur->right;			continue;		}		if (!prio_tree_right_empty(cur))			get_index(root, cur->right, &r_index, &h_index_right);		else {			cur = cur->left;			continue;		}		/* both h_index_left and h_index_right cannot be 0 */		if (h_index_left >= h_index_right)			cur = cur->left;		else			cur = cur->right;	}	if (prio_tree_root(cur)) {		BUG_ON(root->prio_tree_node != cur);		__INIT_PRIO_TREE_ROOT(root, root->raw);		return;	}	if (cur->parent->right == cur)		cur->parent->right = cur->parent;	else		cur->parent->left = cur->parent;	while (cur != node)		cur = prio_tree_replace(root, cur->parent, cur);}/* * Following functions help to enumerate all prio_tree_nodes in the tree that * overlap with the input interval X [radix_index, heap_index]. The enumeration * takes O(log n + m) time where 'log n' is the height of the tree (which is * proportional to # of bits required to represent the maximum heap_index) and * 'm' is the number of prio_tree_nodes that overlap the interval X. */static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,		unsigned long *r_index, unsigned long *h_index){	if (prio_tree_left_empty(iter->cur))		return NULL;	get_index(iter->root, iter->cur->left, r_index, h_index);	if (iter->r_index <= *h_index) {		iter->cur = iter->cur->left;		iter->mask >>= 1;		if (iter->mask) {			if (iter->size_level)				iter->size_level++;		} else {			if (iter->size_level) {				BUG_ON(!prio_tree_left_empty(iter->cur));				BUG_ON(!prio_tree_right_empty(iter->cur));				iter->size_level++;				iter->mask = ULONG_MAX;			} else {				iter->size_level = 1;				iter->mask = 1UL << (BITS_PER_LONG - 1);			}		}		return iter->cur;	}	return NULL;}static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,		unsigned long *r_index, unsigned long *h_index){	unsigned long value;	if (prio_tree_right_empty(iter->cur))		return NULL;	if (iter->size_level)		value = iter->value;	else		value = iter->value | iter->mask;	if (iter->h_index < value)		return NULL;	get_index(iter->root, iter->cur->right, r_index, h_index);	if (iter->r_index <= *h_index) {		iter->cur = iter->cur->right;		iter->mask >>= 1;		iter->value = value;		if (iter->mask) {			if (iter->size_level)				iter->size_level++;		} else {			if (iter->size_level) {				BUG_ON(!prio_tree_left_empty(iter->cur));				BUG_ON(!prio_tree_right_empty(iter->cur));				iter->size_level++;				iter->mask = ULONG_MAX;			} else {				iter->size_level = 1;				iter->mask = 1UL << (BITS_PER_LONG - 1);			}		}		return iter->cur;	}	return NULL;}static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter){	iter->cur = iter->cur->parent;	if (iter->mask == ULONG_MAX)		iter->mask = 1UL;	else if (iter->size_level == 1)		iter->mask = 1UL;	else		iter->mask <<= 1;	if (iter->size_level)		iter->size_level--;	if (!iter->size_level && (iter->value & iter->mask))		iter->value ^= iter->mask;	return iter->cur;}static inline int overlap(struct prio_tree_iter *iter,		unsigned long r_index, unsigned long h_index){	return iter->h_index >= r_index && iter->r_index <= h_index;}/* * prio_tree_first: * * Get the first prio_tree_node that overlaps with the interval [radix_index, * heap_index]. Note that always radix_index <= heap_index. We do a pre-order * traversal of the tree. */static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter){	struct prio_tree_root *root;	unsigned long r_index, h_index;	INIT_PRIO_TREE_ITER(iter);	root = iter->root;	if (prio_tree_empty(root))		return NULL;	get_index(root, root->prio_tree_node, &r_index, &h_index);	if (iter->r_index > h_index)		return NULL;	iter->mask = 1UL << (root->index_bits - 1);	iter->cur = root->prio_tree_node;	while (1) {		if (overlap(iter, r_index, h_index))			return iter->cur;		if (prio_tree_left(iter, &r_index, &h_index))			continue;		if (prio_tree_right(iter, &r_index, &h_index))			continue;		break;	}	return NULL;}/* * prio_tree_next: * * Get the next prio_tree_node that overlaps with the input interval in iter */struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter){	unsigned long r_index, h_index;	if (iter->cur == NULL)		return prio_tree_first(iter);repeat:	while (prio_tree_left(iter, &r_index, &h_index))		if (overlap(iter, r_index, h_index))			return iter->cur;	while (!prio_tree_right(iter, &r_index, &h_index)) {	    	while (!prio_tree_root(iter->cur) &&				iter->cur->parent->right == iter->cur)			prio_tree_parent(iter);		if (prio_tree_root(iter->cur))			return NULL;		prio_tree_parent(iter);	}	if (overlap(iter, r_index, h_index))		return iter->cur;	goto repeat;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -