⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 reed_solomon.c

📁 Lib files of linux kernel
💻 C
字号:
/* * lib/reed_solomon/reed_solomon.c * * Overview: *   Generic Reed Solomon encoder / decoder library * * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) * * Reed Solomon code lifted from reed solomon library written by Phil Karn * Copyright 2002 Phil Karn, KA9Q * * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Description: * * The generic Reed Solomon library provides runtime configurable * encoding / decoding of RS codes. * Each user must call init_rs to get a pointer to a rs_control * structure for the given rs parameters. This structure is either * generated or a already available matching control structure is used. * If a structure is generated then the polynomial arrays for * fast encoding / decoding are built. This can take some time so * make sure not to call this function from a time critical path. * Usually a module / driver should initialize the necessary * rs_control structure on module / driver init and release it * on exit. * The encoding puts the calculated syndrome into a given syndrome * buffer. * The decoding is a two step process. The first step calculates * the syndrome over the received (data + syndrome) and calls the * second stage, which does the decoding / error correction itself. * Many hw encoders provide a syndrome calculation over the received * data + syndrome and can call the second stage directly. * */#include <linux/errno.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/module.h>#include <linux/rslib.h>#include <linux/slab.h>#include <linux/mutex.h>/* This list holds all currently allocated rs control structures */static LIST_HEAD (rslist);/* Protection for the list */static DEFINE_MUTEX(rslistlock);/** * rs_init - Initialize a Reed-Solomon codec * @symsize:	symbol size, bits (1-8) * @gfpoly:	Field generator polynomial coefficients * @gffunc:	Field generator function * @fcr:	first root of RS code generator polynomial, index form * @prim:	primitive element to generate polynomial roots * @nroots:	RS code generator polynomial degree (number of roots) * * Allocate a control structure and the polynom arrays for faster * en/decoding. Fill the arrays according to the given parameters. */static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),                                  int fcr, int prim, int nroots){	struct rs_control *rs;	int i, j, sr, root, iprim;	/* Allocate the control structure */	rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);	if (rs == NULL)		return NULL;	INIT_LIST_HEAD(&rs->list);	rs->mm = symsize;	rs->nn = (1 << symsize) - 1;	rs->fcr = fcr;	rs->prim = prim;	rs->nroots = nroots;	rs->gfpoly = gfpoly;	rs->gffunc = gffunc;	/* Allocate the arrays */	rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);	if (rs->alpha_to == NULL)		goto errrs;	rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);	if (rs->index_of == NULL)		goto erralp;	rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);	if(rs->genpoly == NULL)		goto erridx;	/* Generate Galois field lookup tables */	rs->index_of[0] = rs->nn;	/* log(zero) = -inf */	rs->alpha_to[rs->nn] = 0;	/* alpha**-inf = 0 */	if (gfpoly) {		sr = 1;		for (i = 0; i < rs->nn; i++) {			rs->index_of[sr] = i;			rs->alpha_to[i] = sr;			sr <<= 1;			if (sr & (1 << symsize))				sr ^= gfpoly;			sr &= rs->nn;		}	} else {		sr = gffunc(0);		for (i = 0; i < rs->nn; i++) {			rs->index_of[sr] = i;			rs->alpha_to[i] = sr;			sr = gffunc(sr);		}	}	/* If it's not primitive, exit */	if(sr != rs->alpha_to[0])		goto errpol;	/* Find prim-th root of 1, used in decoding */	for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);	/* prim-th root of 1, index form */	rs->iprim = iprim / prim;	/* Form RS code generator polynomial from its roots */	rs->genpoly[0] = 1;	for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {		rs->genpoly[i + 1] = 1;		/* Multiply rs->genpoly[] by  @**(root + x) */		for (j = i; j > 0; j--) {			if (rs->genpoly[j] != 0) {				rs->genpoly[j] = rs->genpoly[j -1] ^					rs->alpha_to[rs_modnn(rs,					rs->index_of[rs->genpoly[j]] + root)];			} else				rs->genpoly[j] = rs->genpoly[j - 1];		}		/* rs->genpoly[0] can never be zero */		rs->genpoly[0] =			rs->alpha_to[rs_modnn(rs,				rs->index_of[rs->genpoly[0]] + root)];	}	/* convert rs->genpoly[] to index form for quicker encoding */	for (i = 0; i <= nroots; i++)		rs->genpoly[i] = rs->index_of[rs->genpoly[i]];	return rs;	/* Error exit */errpol:	kfree(rs->genpoly);erridx:	kfree(rs->index_of);erralp:	kfree(rs->alpha_to);errrs:	kfree(rs);	return NULL;}/** *  free_rs - Free the rs control structure, if it is no longer used *  @rs:	the control structure which is not longer used by the *		caller */void free_rs(struct rs_control *rs){	mutex_lock(&rslistlock);	rs->users--;	if(!rs->users) {		list_del(&rs->list);		kfree(rs->alpha_to);		kfree(rs->index_of);		kfree(rs->genpoly);		kfree(rs);	}	mutex_unlock(&rslistlock);}/** * init_rs_internal - Find a matching or allocate a new rs control structure *  @symsize:	the symbol size (number of bits) *  @gfpoly:	the extended Galois field generator polynomial coefficients, *		with the 0th coefficient in the low order bit. The polynomial *		must be primitive; *  @gffunc:	pointer to function to generate the next field element, *		or the multiplicative identity element if given 0.  Used *		instead of gfpoly if gfpoly is 0 *  @fcr:  	the first consecutive root of the rs code generator polynomial *		in index form *  @prim:	primitive element to generate polynomial roots *  @nroots:	RS code generator polynomial degree (number of roots) */static struct rs_control *init_rs_internal(int symsize, int gfpoly,                                           int (*gffunc)(int), int fcr,                                           int prim, int nroots){	struct list_head	*tmp;	struct rs_control	*rs;	/* Sanity checks */	if (symsize < 1)		return NULL;	if (fcr < 0 || fcr >= (1<<symsize))    		return NULL;	if (prim <= 0 || prim >= (1<<symsize))    		return NULL;	if (nroots < 0 || nroots >= (1<<symsize))		return NULL;	mutex_lock(&rslistlock);	/* Walk through the list and look for a matching entry */	list_for_each(tmp, &rslist) {		rs = list_entry(tmp, struct rs_control, list);		if (symsize != rs->mm)			continue;		if (gfpoly != rs->gfpoly)			continue;		if (gffunc != rs->gffunc)			continue;		if (fcr != rs->fcr)			continue;		if (prim != rs->prim)			continue;		if (nroots != rs->nroots)			continue;		/* We have a matching one already */		rs->users++;		goto out;	}	/* Create a new one */	rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots);	if (rs) {		rs->users = 1;		list_add(&rs->list, &rslist);	}out:	mutex_unlock(&rslistlock);	return rs;}/** * init_rs - Find a matching or allocate a new rs control structure *  @symsize:	the symbol size (number of bits) *  @gfpoly:	the extended Galois field generator polynomial coefficients, *		with the 0th coefficient in the low order bit. The polynomial *		must be primitive; *  @fcr:  	the first consecutive root of the rs code generator polynomial *		in index form *  @prim:	primitive element to generate polynomial roots *  @nroots:	RS code generator polynomial degree (number of roots) */struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,                           int nroots){	return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots);}/** * init_rs_non_canonical - Find a matching or allocate a new rs control *                         structure, for fields with non-canonical *                         representation *  @symsize:	the symbol size (number of bits) *  @gffunc:	pointer to function to generate the next field element, *		or the multiplicative identity element if given 0.  Used *		instead of gfpoly if gfpoly is 0 *  @fcr:  	the first consecutive root of the rs code generator polynomial *		in index form *  @prim:	primitive element to generate polynomial roots *  @nroots:	RS code generator polynomial degree (number of roots) */struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),                                         int fcr, int prim, int nroots){	return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots);}#ifdef CONFIG_REED_SOLOMON_ENC8/** *  encode_rs8 - Calculate the parity for data values (8bit data width) *  @rs:	the rs control structure *  @data:	data field of a given type *  @len:	data length *  @par:	parity data, must be initialized by caller (usually all 0) *  @invmsk:	invert data mask (will be xored on data) * *  The parity uses a uint16_t data type to enable *  symbol size > 8. The calling code must take care of encoding of the *  syndrome result for storage itself. */int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,	       uint16_t invmsk){#include "encode_rs.c"}EXPORT_SYMBOL_GPL(encode_rs8);#endif#ifdef CONFIG_REED_SOLOMON_DEC8/** *  decode_rs8 - Decode codeword (8bit data width) *  @rs:	the rs control structure *  @data:	data field of a given type *  @par:	received parity data field *  @len:	data length *  @s:		syndrome data field (if NULL, syndrome is calculated) *  @no_eras:	number of erasures *  @eras_pos:	position of erasures, can be NULL *  @invmsk:	invert data mask (will be xored on data, not on parity!) *  @corr:	buffer to store correction bitmask on eras_pos * *  The syndrome and parity uses a uint16_t data type to enable *  symbol size > 8. The calling code must take care of decoding of the *  syndrome result and the received parity before calling this code. *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors. */int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,	       uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,	       uint16_t *corr){#include "decode_rs.c"}EXPORT_SYMBOL_GPL(decode_rs8);#endif#ifdef CONFIG_REED_SOLOMON_ENC16/** *  encode_rs16 - Calculate the parity for data values (16bit data width) *  @rs:	the rs control structure *  @data:	data field of a given type *  @len:	data length *  @par:	parity data, must be initialized by caller (usually all 0) *  @invmsk:	invert data mask (will be xored on data, not on parity!) * *  Each field in the data array contains up to symbol size bits of valid data. */int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,	uint16_t invmsk){#include "encode_rs.c"}EXPORT_SYMBOL_GPL(encode_rs16);#endif#ifdef CONFIG_REED_SOLOMON_DEC16/** *  decode_rs16 - Decode codeword (16bit data width) *  @rs:	the rs control structure *  @data:	data field of a given type *  @par:	received parity data field *  @len:	data length *  @s:		syndrome data field (if NULL, syndrome is calculated) *  @no_eras:	number of erasures *  @eras_pos:	position of erasures, can be NULL *  @invmsk:	invert data mask (will be xored on data, not on parity!) *  @corr:	buffer to store correction bitmask on eras_pos * *  Each field in the data array contains up to symbol size bits of valid data. *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors. */int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,		uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,		uint16_t *corr){#include "decode_rs.c"}EXPORT_SYMBOL_GPL(decode_rs16);#endifEXPORT_SYMBOL_GPL(init_rs);EXPORT_SYMBOL_GPL(init_rs_non_canonical);EXPORT_SYMBOL_GPL(free_rs);MODULE_LICENSE("GPL");MODULE_DESCRIPTION("Reed Solomon encoder/decoder");MODULE_AUTHOR("Phil Karn, Thomas Gleixner");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -