⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 workqueue.c

📁 Kernel code of linux kernel
💻 C
📖 第 1 页 / 共 2 页
字号:
	cwq = get_wq_data(work);	if (!cwq)		return ret;	spin_lock_irq(&cwq->lock);	if (!list_empty(&work->entry)) {		/*		 * This work is queued, but perhaps we locked the wrong cwq.		 * In that case we must see the new value after rmb(), see		 * insert_work()->wmb().		 */		smp_rmb();		if (cwq == get_wq_data(work)) {			list_del_init(&work->entry);			ret = 1;		}	}	spin_unlock_irq(&cwq->lock);	return ret;}static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,				struct work_struct *work){	struct wq_barrier barr;	int running = 0;	spin_lock_irq(&cwq->lock);	if (unlikely(cwq->current_work == work)) {		insert_wq_barrier(cwq, &barr, cwq->worklist.next);		running = 1;	}	spin_unlock_irq(&cwq->lock);	if (unlikely(running))		wait_for_completion(&barr.done);}static void wait_on_work(struct work_struct *work){	struct cpu_workqueue_struct *cwq;	struct workqueue_struct *wq;	const cpumask_t *cpu_map;	int cpu;	might_sleep();	lock_map_acquire(&work->lockdep_map);	lock_map_release(&work->lockdep_map);	cwq = get_wq_data(work);	if (!cwq)		return;	wq = cwq->wq;	cpu_map = wq_cpu_map(wq);	for_each_cpu_mask_nr(cpu, *cpu_map)		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);}static int __cancel_work_timer(struct work_struct *work,				struct timer_list* timer){	int ret;	do {		ret = (timer && likely(del_timer(timer)));		if (!ret)			ret = try_to_grab_pending(work);		wait_on_work(work);	} while (unlikely(ret < 0));	work_clear_pending(work);	return ret;}/** * cancel_work_sync - block until a work_struct's callback has terminated * @work: the work which is to be flushed * * Returns true if @work was pending. * * cancel_work_sync() will cancel the work if it is queued. If the work's * callback appears to be running, cancel_work_sync() will block until it * has completed. * * It is possible to use this function if the work re-queues itself. It can * cancel the work even if it migrates to another workqueue, however in that * case it only guarantees that work->func() has completed on the last queued * workqueue. * * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not * pending, otherwise it goes into a busy-wait loop until the timer expires. * * The caller must ensure that workqueue_struct on which this work was last * queued can't be destroyed before this function returns. */int cancel_work_sync(struct work_struct *work){	return __cancel_work_timer(work, NULL);}EXPORT_SYMBOL_GPL(cancel_work_sync);/** * cancel_delayed_work_sync - reliably kill off a delayed work. * @dwork: the delayed work struct * * Returns true if @dwork was pending. * * It is possible to use this function if @dwork rearms itself via queue_work() * or queue_delayed_work(). See also the comment for cancel_work_sync(). */int cancel_delayed_work_sync(struct delayed_work *dwork){	return __cancel_work_timer(&dwork->work, &dwork->timer);}EXPORT_SYMBOL(cancel_delayed_work_sync);static struct workqueue_struct *keventd_wq __read_mostly;/** * schedule_work - put work task in global workqueue * @work: job to be done * * This puts a job in the kernel-global workqueue. */int schedule_work(struct work_struct *work){	return queue_work(keventd_wq, work);}EXPORT_SYMBOL(schedule_work);/* * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */int schedule_work_on(int cpu, struct work_struct *work){	return queue_work_on(cpu, keventd_wq, work);}EXPORT_SYMBOL(schedule_work_on);/** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */int schedule_delayed_work(struct delayed_work *dwork,					unsigned long delay){	return queue_delayed_work(keventd_wq, dwork, delay);}EXPORT_SYMBOL(schedule_delayed_work);/** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */int schedule_delayed_work_on(int cpu,			struct delayed_work *dwork, unsigned long delay){	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);}EXPORT_SYMBOL(schedule_delayed_work_on);/** * schedule_on_each_cpu - call a function on each online CPU from keventd * @func: the function to call * * Returns zero on success. * Returns -ve errno on failure. * * schedule_on_each_cpu() is very slow. */int schedule_on_each_cpu(work_func_t func){	int cpu;	struct work_struct *works;	works = alloc_percpu(struct work_struct);	if (!works)		return -ENOMEM;	get_online_cpus();	for_each_online_cpu(cpu) {		struct work_struct *work = per_cpu_ptr(works, cpu);		INIT_WORK(work, func);		schedule_work_on(cpu, work);	}	for_each_online_cpu(cpu)		flush_work(per_cpu_ptr(works, cpu));	put_online_cpus();	free_percpu(works);	return 0;}void flush_scheduled_work(void){	flush_workqueue(keventd_wq);}EXPORT_SYMBOL(flush_scheduled_work);/** * execute_in_process_context - reliably execute the routine with user context * @fn:		the function to execute * @ew:		guaranteed storage for the execute work structure (must *		be available when the work executes) * * Executes the function immediately if process context is available, * otherwise schedules the function for delayed execution. * * Returns:	0 - function was executed *		1 - function was scheduled for execution */int execute_in_process_context(work_func_t fn, struct execute_work *ew){	if (!in_interrupt()) {		fn(&ew->work);		return 0;	}	INIT_WORK(&ew->work, fn);	schedule_work(&ew->work);	return 1;}EXPORT_SYMBOL_GPL(execute_in_process_context);int keventd_up(void){	return keventd_wq != NULL;}int current_is_keventd(void){	struct cpu_workqueue_struct *cwq;	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */	int ret = 0;	BUG_ON(!keventd_wq);	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);	if (current == cwq->thread)		ret = 1;	return ret;}static struct cpu_workqueue_struct *init_cpu_workqueue(struct workqueue_struct *wq, int cpu){	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);	cwq->wq = wq;	spin_lock_init(&cwq->lock);	INIT_LIST_HEAD(&cwq->worklist);	init_waitqueue_head(&cwq->more_work);	return cwq;}static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu){	struct workqueue_struct *wq = cwq->wq;	const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";	struct task_struct *p;	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);	/*	 * Nobody can add the work_struct to this cwq,	 *	if (caller is __create_workqueue)	 *		nobody should see this wq	 *	else // caller is CPU_UP_PREPARE	 *		cpu is not on cpu_online_map	 * so we can abort safely.	 */	if (IS_ERR(p))		return PTR_ERR(p);	cwq->thread = p;	return 0;}static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu){	struct task_struct *p = cwq->thread;	if (p != NULL) {		if (cpu >= 0)			kthread_bind(p, cpu);		wake_up_process(p);	}}struct workqueue_struct *__create_workqueue_key(const char *name,						int singlethread,						int freezeable,						struct lock_class_key *key,						const char *lock_name){	struct workqueue_struct *wq;	struct cpu_workqueue_struct *cwq;	int err = 0, cpu;	wq = kzalloc(sizeof(*wq), GFP_KERNEL);	if (!wq)		return NULL;	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);	if (!wq->cpu_wq) {		kfree(wq);		return NULL;	}	wq->name = name;	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);	wq->singlethread = singlethread;	wq->freezeable = freezeable;	INIT_LIST_HEAD(&wq->list);	if (singlethread) {		cwq = init_cpu_workqueue(wq, singlethread_cpu);		err = create_workqueue_thread(cwq, singlethread_cpu);		start_workqueue_thread(cwq, -1);	} else {		cpu_maps_update_begin();		/*		 * We must place this wq on list even if the code below fails.		 * cpu_down(cpu) can remove cpu from cpu_populated_map before		 * destroy_workqueue() takes the lock, in that case we leak		 * cwq[cpu]->thread.		 */		spin_lock(&workqueue_lock);		list_add(&wq->list, &workqueues);		spin_unlock(&workqueue_lock);		/*		 * We must initialize cwqs for each possible cpu even if we		 * are going to call destroy_workqueue() finally. Otherwise		 * cpu_up() can hit the uninitialized cwq once we drop the		 * lock.		 */		for_each_possible_cpu(cpu) {			cwq = init_cpu_workqueue(wq, cpu);			if (err || !cpu_online(cpu))				continue;			err = create_workqueue_thread(cwq, cpu);			start_workqueue_thread(cwq, cpu);		}		cpu_maps_update_done();	}	if (err) {		destroy_workqueue(wq);		wq = NULL;	}	return wq;}EXPORT_SYMBOL_GPL(__create_workqueue_key);static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq){	/*	 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,	 * cpu_add_remove_lock protects cwq->thread.	 */	if (cwq->thread == NULL)		return;	lock_map_acquire(&cwq->wq->lockdep_map);	lock_map_release(&cwq->wq->lockdep_map);	flush_cpu_workqueue(cwq);	/*	 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,	 * a concurrent flush_workqueue() can insert a barrier after us.	 * However, in that case run_workqueue() won't return and check	 * kthread_should_stop() until it flushes all work_struct's.	 * When ->worklist becomes empty it is safe to exit because no	 * more work_structs can be queued on this cwq: flush_workqueue	 * checks list_empty(), and a "normal" queue_work() can't use	 * a dead CPU.	 */	kthread_stop(cwq->thread);	cwq->thread = NULL;}/** * destroy_workqueue - safely terminate a workqueue * @wq: target workqueue * * Safely destroy a workqueue. All work currently pending will be done first. */void destroy_workqueue(struct workqueue_struct *wq){	const cpumask_t *cpu_map = wq_cpu_map(wq);	int cpu;	cpu_maps_update_begin();	spin_lock(&workqueue_lock);	list_del(&wq->list);	spin_unlock(&workqueue_lock);	for_each_cpu_mask_nr(cpu, *cpu_map)		cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); 	cpu_maps_update_done();	free_percpu(wq->cpu_wq);	kfree(wq);}EXPORT_SYMBOL_GPL(destroy_workqueue);static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,						unsigned long action,						void *hcpu){	unsigned int cpu = (unsigned long)hcpu;	struct cpu_workqueue_struct *cwq;	struct workqueue_struct *wq;	int ret = NOTIFY_OK;	action &= ~CPU_TASKS_FROZEN;	switch (action) {	case CPU_UP_PREPARE:		cpu_set(cpu, cpu_populated_map);	}undo:	list_for_each_entry(wq, &workqueues, list) {		cwq = per_cpu_ptr(wq->cpu_wq, cpu);		switch (action) {		case CPU_UP_PREPARE:			if (!create_workqueue_thread(cwq, cpu))				break;			printk(KERN_ERR "workqueue [%s] for %i failed\n",				wq->name, cpu);			action = CPU_UP_CANCELED;			ret = NOTIFY_BAD;			goto undo;		case CPU_ONLINE:			start_workqueue_thread(cwq, cpu);			break;		case CPU_UP_CANCELED:			start_workqueue_thread(cwq, -1);		case CPU_POST_DEAD:			cleanup_workqueue_thread(cwq);			break;		}	}	switch (action) {	case CPU_UP_CANCELED:	case CPU_POST_DEAD:		cpu_clear(cpu, cpu_populated_map);	}	return ret;}void __init init_workqueues(void){	cpu_populated_map = cpu_online_map;	singlethread_cpu = first_cpu(cpu_possible_map);	cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);	hotcpu_notifier(workqueue_cpu_callback, 0);	keventd_wq = create_workqueue("events");	BUG_ON(!keventd_wq);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -