⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sched_rt.c

📁 Kernel code of linux kernel
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR * policies) */#ifdef CONFIG_SMPstatic inline int rt_overloaded(struct rq *rq){	return atomic_read(&rq->rd->rto_count);}static inline void rt_set_overload(struct rq *rq){	if (!rq->online)		return;	cpu_set(rq->cpu, rq->rd->rto_mask);	/*	 * Make sure the mask is visible before we set	 * the overload count. That is checked to determine	 * if we should look at the mask. It would be a shame	 * if we looked at the mask, but the mask was not	 * updated yet.	 */	wmb();	atomic_inc(&rq->rd->rto_count);}static inline void rt_clear_overload(struct rq *rq){	if (!rq->online)		return;	/* the order here really doesn't matter */	atomic_dec(&rq->rd->rto_count);	cpu_clear(rq->cpu, rq->rd->rto_mask);}static void update_rt_migration(struct rq *rq){	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {		if (!rq->rt.overloaded) {			rt_set_overload(rq);			rq->rt.overloaded = 1;		}	} else if (rq->rt.overloaded) {		rt_clear_overload(rq);		rq->rt.overloaded = 0;	}}#endif /* CONFIG_SMP */static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se){	return container_of(rt_se, struct task_struct, rt);}static inline int on_rt_rq(struct sched_rt_entity *rt_se){	return !list_empty(&rt_se->run_list);}#ifdef CONFIG_RT_GROUP_SCHEDstatic inline u64 sched_rt_runtime(struct rt_rq *rt_rq){	if (!rt_rq->tg)		return RUNTIME_INF;	return rt_rq->rt_runtime;}static inline u64 sched_rt_period(struct rt_rq *rt_rq){	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);}#define for_each_leaf_rt_rq(rt_rq, rq) \	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq){	return rt_rq->rq;}static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se){	return rt_se->rt_rq;}#define for_each_sched_rt_entity(rt_se) \	for (; rt_se; rt_se = rt_se->parent)static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se){	return rt_se->my_q;}static void enqueue_rt_entity(struct sched_rt_entity *rt_se);static void dequeue_rt_entity(struct sched_rt_entity *rt_se);static void sched_rt_rq_enqueue(struct rt_rq *rt_rq){	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;	struct sched_rt_entity *rt_se = rt_rq->rt_se;	if (rt_rq->rt_nr_running) {		if (rt_se && !on_rt_rq(rt_se))			enqueue_rt_entity(rt_se);		if (rt_rq->highest_prio < curr->prio)			resched_task(curr);	}}static void sched_rt_rq_dequeue(struct rt_rq *rt_rq){	struct sched_rt_entity *rt_se = rt_rq->rt_se;	if (rt_se && on_rt_rq(rt_se))		dequeue_rt_entity(rt_se);}static inline int rt_rq_throttled(struct rt_rq *rt_rq){	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;}static int rt_se_boosted(struct sched_rt_entity *rt_se){	struct rt_rq *rt_rq = group_rt_rq(rt_se);	struct task_struct *p;	if (rt_rq)		return !!rt_rq->rt_nr_boosted;	p = rt_task_of(rt_se);	return p->prio != p->normal_prio;}#ifdef CONFIG_SMPstatic inline cpumask_t sched_rt_period_mask(void){	return cpu_rq(smp_processor_id())->rd->span;}#elsestatic inline cpumask_t sched_rt_period_mask(void){	return cpu_online_map;}#endifstatic inlinestruct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu){	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];}static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq){	return &rt_rq->tg->rt_bandwidth;}#else /* !CONFIG_RT_GROUP_SCHED */static inline u64 sched_rt_runtime(struct rt_rq *rt_rq){	return rt_rq->rt_runtime;}static inline u64 sched_rt_period(struct rt_rq *rt_rq){	return ktime_to_ns(def_rt_bandwidth.rt_period);}#define for_each_leaf_rt_rq(rt_rq, rq) \	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq){	return container_of(rt_rq, struct rq, rt);}static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se){	struct task_struct *p = rt_task_of(rt_se);	struct rq *rq = task_rq(p);	return &rq->rt;}#define for_each_sched_rt_entity(rt_se) \	for (; rt_se; rt_se = NULL)static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se){	return NULL;}static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq){	if (rt_rq->rt_nr_running)		resched_task(rq_of_rt_rq(rt_rq)->curr);}static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq){}static inline int rt_rq_throttled(struct rt_rq *rt_rq){	return rt_rq->rt_throttled;}static inline cpumask_t sched_rt_period_mask(void){	return cpu_online_map;}static inlinestruct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu){	return &cpu_rq(cpu)->rt;}static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq){	return &def_rt_bandwidth;}#endif /* CONFIG_RT_GROUP_SCHED */#ifdef CONFIG_SMPstatic int do_balance_runtime(struct rt_rq *rt_rq){	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;	int i, weight, more = 0;	u64 rt_period;	weight = cpus_weight(rd->span);	spin_lock(&rt_b->rt_runtime_lock);	rt_period = ktime_to_ns(rt_b->rt_period);	for_each_cpu_mask_nr(i, rd->span) {		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);		s64 diff;		if (iter == rt_rq)			continue;		spin_lock(&iter->rt_runtime_lock);		if (iter->rt_runtime == RUNTIME_INF)			goto next;		diff = iter->rt_runtime - iter->rt_time;		if (diff > 0) {			diff = div_u64((u64)diff, weight);			if (rt_rq->rt_runtime + diff > rt_period)				diff = rt_period - rt_rq->rt_runtime;			iter->rt_runtime -= diff;			rt_rq->rt_runtime += diff;			more = 1;			if (rt_rq->rt_runtime == rt_period) {				spin_unlock(&iter->rt_runtime_lock);				break;			}		}next:		spin_unlock(&iter->rt_runtime_lock);	}	spin_unlock(&rt_b->rt_runtime_lock);	return more;}static void __disable_runtime(struct rq *rq){	struct root_domain *rd = rq->rd;	struct rt_rq *rt_rq;	if (unlikely(!scheduler_running))		return;	for_each_leaf_rt_rq(rt_rq, rq) {		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);		s64 want;		int i;		spin_lock(&rt_b->rt_runtime_lock);		spin_lock(&rt_rq->rt_runtime_lock);		if (rt_rq->rt_runtime == RUNTIME_INF ||				rt_rq->rt_runtime == rt_b->rt_runtime)			goto balanced;		spin_unlock(&rt_rq->rt_runtime_lock);		want = rt_b->rt_runtime - rt_rq->rt_runtime;		for_each_cpu_mask(i, rd->span) {			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);			s64 diff;			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)				continue;			spin_lock(&iter->rt_runtime_lock);			if (want > 0) {				diff = min_t(s64, iter->rt_runtime, want);				iter->rt_runtime -= diff;				want -= diff;			} else {				iter->rt_runtime -= want;				want -= want;			}			spin_unlock(&iter->rt_runtime_lock);			if (!want)				break;		}		spin_lock(&rt_rq->rt_runtime_lock);		BUG_ON(want);balanced:		rt_rq->rt_runtime = RUNTIME_INF;		spin_unlock(&rt_rq->rt_runtime_lock);		spin_unlock(&rt_b->rt_runtime_lock);	}}static void disable_runtime(struct rq *rq){	unsigned long flags;	spin_lock_irqsave(&rq->lock, flags);	__disable_runtime(rq);	spin_unlock_irqrestore(&rq->lock, flags);}static void __enable_runtime(struct rq *rq){	struct rt_rq *rt_rq;	if (unlikely(!scheduler_running))		return;	for_each_leaf_rt_rq(rt_rq, rq) {		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);		spin_lock(&rt_b->rt_runtime_lock);		spin_lock(&rt_rq->rt_runtime_lock);		rt_rq->rt_runtime = rt_b->rt_runtime;		rt_rq->rt_time = 0;		rt_rq->rt_throttled = 0;		spin_unlock(&rt_rq->rt_runtime_lock);		spin_unlock(&rt_b->rt_runtime_lock);	}}static void enable_runtime(struct rq *rq){	unsigned long flags;	spin_lock_irqsave(&rq->lock, flags);	__enable_runtime(rq);	spin_unlock_irqrestore(&rq->lock, flags);}static int balance_runtime(struct rt_rq *rt_rq){	int more = 0;	if (rt_rq->rt_time > rt_rq->rt_runtime) {		spin_unlock(&rt_rq->rt_runtime_lock);		more = do_balance_runtime(rt_rq);		spin_lock(&rt_rq->rt_runtime_lock);	}	return more;}#else /* !CONFIG_SMP */static inline int balance_runtime(struct rt_rq *rt_rq){	return 0;}#endif /* CONFIG_SMP */static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun){	int i, idle = 1;	cpumask_t span;	if (rt_b->rt_runtime == RUNTIME_INF)		return 1;	span = sched_rt_period_mask();	for_each_cpu_mask(i, span) {		int enqueue = 0;		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);		struct rq *rq = rq_of_rt_rq(rt_rq);		spin_lock(&rq->lock);		if (rt_rq->rt_time) {			u64 runtime;			spin_lock(&rt_rq->rt_runtime_lock);			if (rt_rq->rt_throttled)				balance_runtime(rt_rq);			runtime = rt_rq->rt_runtime;			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {				rt_rq->rt_throttled = 0;				enqueue = 1;			}			if (rt_rq->rt_time || rt_rq->rt_nr_running)				idle = 0;			spin_unlock(&rt_rq->rt_runtime_lock);		} else if (rt_rq->rt_nr_running)			idle = 0;		if (enqueue)			sched_rt_rq_enqueue(rt_rq);		spin_unlock(&rq->lock);	}	return idle;}static inline int rt_se_prio(struct sched_rt_entity *rt_se){#ifdef CONFIG_RT_GROUP_SCHED	struct rt_rq *rt_rq = group_rt_rq(rt_se);	if (rt_rq)		return rt_rq->highest_prio;#endif	return rt_task_of(rt_se)->prio;}static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq){	u64 runtime = sched_rt_runtime(rt_rq);	if (rt_rq->rt_throttled)		return rt_rq_throttled(rt_rq);	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))		return 0;	balance_runtime(rt_rq);	runtime = sched_rt_runtime(rt_rq);	if (runtime == RUNTIME_INF)		return 0;	if (rt_rq->rt_time > runtime) {		rt_rq->rt_throttled = 1;		if (rt_rq_throttled(rt_rq)) {			sched_rt_rq_dequeue(rt_rq);			return 1;		}	}	return 0;}/* * Update the current task's runtime statistics. Skip current tasks that * are not in our scheduling class. */static void update_curr_rt(struct rq *rq){	struct task_struct *curr = rq->curr;	struct sched_rt_entity *rt_se = &curr->rt;	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);	u64 delta_exec;	if (!task_has_rt_policy(curr))		return;	delta_exec = rq->clock - curr->se.exec_start;	if (unlikely((s64)delta_exec < 0))		delta_exec = 0;	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));	curr->se.sum_exec_runtime += delta_exec;	curr->se.exec_start = rq->clock;	cpuacct_charge(curr, delta_exec);	for_each_sched_rt_entity(rt_se) {		rt_rq = rt_rq_of_se(rt_se);		spin_lock(&rt_rq->rt_runtime_lock);		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {			rt_rq->rt_time += delta_exec;			if (sched_rt_runtime_exceeded(rt_rq))				resched_task(curr);		}		spin_unlock(&rt_rq->rt_runtime_lock);	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -