📄 manage.c
字号:
return ret;}/* * Internal function to register an irqaction - typically used to * allocate special interrupts that are part of the architecture. */int setup_irq(unsigned int irq, struct irqaction *new){ struct irq_desc *desc = irq_desc + irq; struct irqaction *old, **p; const char *old_name = NULL; unsigned long flags; int shared = 0; int ret; if (irq >= NR_IRQS) return -EINVAL; if (desc->chip == &no_irq_chip) return -ENOSYS; /* * Some drivers like serial.c use request_irq() heavily, * so we have to be careful not to interfere with a * running system. */ if (new->flags & IRQF_SAMPLE_RANDOM) { /* * This function might sleep, we want to call it first, * outside of the atomic block. * Yes, this might clear the entropy pool if the wrong * driver is attempted to be loaded, without actually * installing a new handler, but is this really a problem, * only the sysadmin is able to do this. */ rand_initialize_irq(irq); } /* * The following block of code has to be executed atomically */ spin_lock_irqsave(&desc->lock, flags); p = &desc->action; old = *p; if (old) { /* * Can't share interrupts unless both agree to and are * the same type (level, edge, polarity). So both flag * fields must have IRQF_SHARED set and the bits which * set the trigger type must match. */ if (!((old->flags & new->flags) & IRQF_SHARED) || ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK)) { old_name = old->name; goto mismatch; }#if defined(CONFIG_IRQ_PER_CPU) /* All handlers must agree on per-cpuness */ if ((old->flags & IRQF_PERCPU) != (new->flags & IRQF_PERCPU)) goto mismatch;#endif /* add new interrupt at end of irq queue */ do { p = &old->next; old = *p; } while (old); shared = 1; } if (!shared) { irq_chip_set_defaults(desc->chip); /* Setup the type (level, edge polarity) if configured: */ if (new->flags & IRQF_TRIGGER_MASK) { ret = __irq_set_trigger(desc->chip, irq, new->flags); if (ret) { spin_unlock_irqrestore(&desc->lock, flags); return ret; } } else compat_irq_chip_set_default_handler(desc);#if defined(CONFIG_IRQ_PER_CPU) if (new->flags & IRQF_PERCPU) desc->status |= IRQ_PER_CPU;#endif desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED); if (!(desc->status & IRQ_NOAUTOEN)) { desc->depth = 0; desc->status &= ~IRQ_DISABLED; if (desc->chip->startup) desc->chip->startup(irq); else desc->chip->enable(irq); } else /* Undo nested disables: */ desc->depth = 1; /* Set default affinity mask once everything is setup */ irq_select_affinity(irq); } *p = new; /* Exclude IRQ from balancing */ if (new->flags & IRQF_NOBALANCING) desc->status |= IRQ_NO_BALANCING; /* Reset broken irq detection when installing new handler */ desc->irq_count = 0; desc->irqs_unhandled = 0; /* * Check whether we disabled the irq via the spurious handler * before. Reenable it and give it another chance. */ if (shared && (desc->status & IRQ_SPURIOUS_DISABLED)) { desc->status &= ~IRQ_SPURIOUS_DISABLED; __enable_irq(desc, irq); } spin_unlock_irqrestore(&desc->lock, flags); new->irq = irq; register_irq_proc(irq); new->dir = NULL; register_handler_proc(irq, new); return 0;mismatch:#ifdef CONFIG_DEBUG_SHIRQ if (!(new->flags & IRQF_PROBE_SHARED)) { printk(KERN_ERR "IRQ handler type mismatch for IRQ %d\n", irq); if (old_name) printk(KERN_ERR "current handler: %s\n", old_name); dump_stack(); }#endif spin_unlock_irqrestore(&desc->lock, flags); return -EBUSY;}/** * free_irq - free an interrupt * @irq: Interrupt line to free * @dev_id: Device identity to free * * Remove an interrupt handler. The handler is removed and if the * interrupt line is no longer in use by any driver it is disabled. * On a shared IRQ the caller must ensure the interrupt is disabled * on the card it drives before calling this function. The function * does not return until any executing interrupts for this IRQ * have completed. * * This function must not be called from interrupt context. */void free_irq(unsigned int irq, void *dev_id){ struct irq_desc *desc; struct irqaction **p; unsigned long flags; WARN_ON(in_interrupt()); if (irq >= NR_IRQS) return; desc = irq_desc + irq; spin_lock_irqsave(&desc->lock, flags); p = &desc->action; for (;;) { struct irqaction *action = *p; if (action) { struct irqaction **pp = p; p = &action->next; if (action->dev_id != dev_id) continue; /* Found it - now remove it from the list of entries */ *pp = action->next; /* Currently used only by UML, might disappear one day.*/#ifdef CONFIG_IRQ_RELEASE_METHOD if (desc->chip->release) desc->chip->release(irq, dev_id);#endif if (!desc->action) { desc->status |= IRQ_DISABLED; if (desc->chip->shutdown) desc->chip->shutdown(irq); else desc->chip->disable(irq); } spin_unlock_irqrestore(&desc->lock, flags); unregister_handler_proc(irq, action); /* Make sure it's not being used on another CPU */ synchronize_irq(irq);#ifdef CONFIG_DEBUG_SHIRQ /* * It's a shared IRQ -- the driver ought to be * prepared for it to happen even now it's * being freed, so let's make sure.... We do * this after actually deregistering it, to * make sure that a 'real' IRQ doesn't run in * parallel with our fake */ if (action->flags & IRQF_SHARED) { local_irq_save(flags); action->handler(irq, dev_id); local_irq_restore(flags); }#endif kfree(action); return; } printk(KERN_ERR "Trying to free already-free IRQ %d\n", irq);#ifdef CONFIG_DEBUG_SHIRQ dump_stack();#endif spin_unlock_irqrestore(&desc->lock, flags); return; }}EXPORT_SYMBOL(free_irq);/** * request_irq - allocate an interrupt line * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs * @irqflags: Interrupt type flags * @devname: An ascii name for the claiming device * @dev_id: A cookie passed back to the handler function * * This call allocates interrupt resources and enables the * interrupt line and IRQ handling. From the point this * call is made your handler function may be invoked. Since * your handler function must clear any interrupt the board * raises, you must take care both to initialise your hardware * and to set up the interrupt handler in the right order. * * Dev_id must be globally unique. Normally the address of the * device data structure is used as the cookie. Since the handler * receives this value it makes sense to use it. * * If your interrupt is shared you must pass a non NULL dev_id * as this is required when freeing the interrupt. * * Flags: * * IRQF_SHARED Interrupt is shared * IRQF_DISABLED Disable local interrupts while processing * IRQF_SAMPLE_RANDOM The interrupt can be used for entropy * */int request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id){ struct irqaction *action; int retval;#ifdef CONFIG_LOCKDEP /* * Lockdep wants atomic interrupt handlers: */ irqflags |= IRQF_DISABLED;#endif /* * Sanity-check: shared interrupts must pass in a real dev-ID, * otherwise we'll have trouble later trying to figure out * which interrupt is which (messes up the interrupt freeing * logic etc). */ if ((irqflags & IRQF_SHARED) && !dev_id) return -EINVAL; if (irq >= NR_IRQS) return -EINVAL; if (irq_desc[irq].status & IRQ_NOREQUEST) return -EINVAL; if (!handler) return -EINVAL; action = kmalloc(sizeof(struct irqaction), GFP_ATOMIC); if (!action) return -ENOMEM; action->handler = handler; action->flags = irqflags; cpus_clear(action->mask); action->name = devname; action->next = NULL; action->dev_id = dev_id;#ifdef CONFIG_DEBUG_SHIRQ if (irqflags & IRQF_SHARED) { /* * It's a shared IRQ -- the driver ought to be prepared for it * to happen immediately, so let's make sure.... * We do this before actually registering it, to make sure that * a 'real' IRQ doesn't run in parallel with our fake */ unsigned long flags; local_irq_save(flags); handler(irq, dev_id); local_irq_restore(flags); }#endif retval = setup_irq(irq, action); if (retval) kfree(action); return retval;}EXPORT_SYMBOL(request_irq);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -