⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ntp.c

📁 Kernel code of linux kernel
💻 C
字号:
/* * linux/kernel/time/ntp.c * * NTP state machine interfaces and logic. * * This code was mainly moved from kernel/timer.c and kernel/time.c * Please see those files for relevant copyright info and historical * changelogs. */#include <linux/mm.h>#include <linux/time.h>#include <linux/timer.h>#include <linux/timex.h>#include <linux/jiffies.h>#include <linux/hrtimer.h>#include <linux/capability.h>#include <linux/math64.h>#include <linux/clocksource.h>#include <asm/timex.h>/* * Timekeeping variables */unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */unsigned long tick_nsec;			/* ACTHZ period (nsec) */u64 tick_length;static u64 tick_length_base;static struct hrtimer leap_timer;#define MAX_TICKADJ		500		/* microsecs */#define MAX_TICKADJ_SCALED	(((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \				  NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)/* * phase-lock loop variables *//* TIME_ERROR prevents overwriting the CMOS clock */static int time_state = TIME_OK;	/* clock synchronization status	*/int time_status = STA_UNSYNC;		/* clock status bits		*/static long time_tai;			/* TAI offset (s)		*/static s64 time_offset;			/* time adjustment (ns)		*/static long time_constant = 2;		/* pll time constant		*/long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/static s64 time_freq;			/* frequency offset (scaled ns/s)*/static long time_reftime;		/* time at last adjustment (s)	*/long time_adjust;static long ntp_tick_adj;static void ntp_update_frequency(void){	u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)				<< NTP_SCALE_SHIFT;	second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;	second_length += time_freq;	tick_length_base = second_length;	tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;	tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);}static void ntp_update_offset(long offset){	long mtemp;	s64 freq_adj;	if (!(time_status & STA_PLL))		return;	if (!(time_status & STA_NANO))		offset *= NSEC_PER_USEC;	/*	 * Scale the phase adjustment and	 * clamp to the operating range.	 */	offset = min(offset, MAXPHASE);	offset = max(offset, -MAXPHASE);	/*	 * Select how the frequency is to be controlled	 * and in which mode (PLL or FLL).	 */	if (time_status & STA_FREQHOLD || time_reftime == 0)		time_reftime = xtime.tv_sec;	mtemp = xtime.tv_sec - time_reftime;	time_reftime = xtime.tv_sec;	freq_adj = (s64)offset * mtemp;	freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);	time_status &= ~STA_MODE;	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {		freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL),				    mtemp);		time_status |= STA_MODE;	}	freq_adj += time_freq;	freq_adj = min(freq_adj, MAXFREQ_SCALED);	time_freq = max(freq_adj, -MAXFREQ_SCALED);	time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);}/** * ntp_clear - Clears the NTP state variables * * Must be called while holding a write on the xtime_lock */void ntp_clear(void){	time_adjust = 0;		/* stop active adjtime() */	time_status |= STA_UNSYNC;	time_maxerror = NTP_PHASE_LIMIT;	time_esterror = NTP_PHASE_LIMIT;	ntp_update_frequency();	tick_length = tick_length_base;	time_offset = 0;}/* * Leap second processing. If in leap-insert state at the end of the * day, the system clock is set back one second; if in leap-delete * state, the system clock is set ahead one second. */static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer){	enum hrtimer_restart res = HRTIMER_NORESTART;	write_seqlock_irq(&xtime_lock);	switch (time_state) {	case TIME_OK:		break;	case TIME_INS:		xtime.tv_sec--;		wall_to_monotonic.tv_sec++;		time_state = TIME_OOP;		printk(KERN_NOTICE "Clock: "		       "inserting leap second 23:59:60 UTC\n");		leap_timer.expires = ktime_add_ns(leap_timer.expires,						  NSEC_PER_SEC);		res = HRTIMER_RESTART;		break;	case TIME_DEL:		xtime.tv_sec++;		time_tai--;		wall_to_monotonic.tv_sec--;		time_state = TIME_WAIT;		printk(KERN_NOTICE "Clock: "		       "deleting leap second 23:59:59 UTC\n");		break;	case TIME_OOP:		time_tai++;		time_state = TIME_WAIT;		/* fall through */	case TIME_WAIT:		if (!(time_status & (STA_INS | STA_DEL)))			time_state = TIME_OK;		break;	}	update_vsyscall(&xtime, clock);	write_sequnlock_irq(&xtime_lock);	return res;}/* * this routine handles the overflow of the microsecond field * * The tricky bits of code to handle the accurate clock support * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. * They were originally developed for SUN and DEC kernels. * All the kudos should go to Dave for this stuff. */void second_overflow(void){	s64 time_adj;	/* Bump the maxerror field */	time_maxerror += MAXFREQ / NSEC_PER_USEC;	if (time_maxerror > NTP_PHASE_LIMIT) {		time_maxerror = NTP_PHASE_LIMIT;		time_status |= STA_UNSYNC;	}	/*	 * Compute the phase adjustment for the next second. The offset is	 * reduced by a fixed factor times the time constant.	 */	tick_length = tick_length_base;	time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);	time_offset -= time_adj;	tick_length += time_adj;	if (unlikely(time_adjust)) {		if (time_adjust > MAX_TICKADJ) {			time_adjust -= MAX_TICKADJ;			tick_length += MAX_TICKADJ_SCALED;		} else if (time_adjust < -MAX_TICKADJ) {			time_adjust += MAX_TICKADJ;			tick_length -= MAX_TICKADJ_SCALED;		} else {			tick_length += (s64)(time_adjust * NSEC_PER_USEC /					NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;			time_adjust = 0;		}	}}#ifdef CONFIG_GENERIC_CMOS_UPDATE/* Disable the cmos update - used by virtualization and embedded */int no_sync_cmos_clock  __read_mostly;static void sync_cmos_clock(unsigned long dummy);static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);static void sync_cmos_clock(unsigned long dummy){	struct timespec now, next;	int fail = 1;	/*	 * If we have an externally synchronized Linux clock, then update	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be	 * called as close as possible to 500 ms before the new second starts.	 * This code is run on a timer.  If the clock is set, that timer	 * may not expire at the correct time.  Thus, we adjust...	 */	if (!ntp_synced())		/*		 * Not synced, exit, do not restart a timer (if one is		 * running, let it run out).		 */		return;	getnstimeofday(&now);	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)		fail = update_persistent_clock(now);	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);	if (next.tv_nsec <= 0)		next.tv_nsec += NSEC_PER_SEC;	if (!fail)		next.tv_sec = 659;	else		next.tv_sec = 0;	if (next.tv_nsec >= NSEC_PER_SEC) {		next.tv_sec++;		next.tv_nsec -= NSEC_PER_SEC;	}	mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));}static void notify_cmos_timer(void){	if (!no_sync_cmos_clock)		mod_timer(&sync_cmos_timer, jiffies + 1);}#elsestatic inline void notify_cmos_timer(void) { }#endif/* adjtimex mainly allows reading (and writing, if superuser) of * kernel time-keeping variables. used by xntpd. */int do_adjtimex(struct timex *txc){	struct timespec ts;	long save_adjust, sec;	int result;	/* In order to modify anything, you gotta be super-user! */	if (txc->modes && !capable(CAP_SYS_TIME))		return -EPERM;	/* Now we validate the data before disabling interrupts */	if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {		/* singleshot must not be used with any other mode bits */		if (txc->modes & ~ADJ_OFFSET_SS_READ)			return -EINVAL;	}	/* if the quartz is off by more than 10% something is VERY wrong ! */	if (txc->modes & ADJ_TICK)		if (txc->tick <  900000/USER_HZ ||		    txc->tick > 1100000/USER_HZ)			return -EINVAL;	if (time_state != TIME_OK && txc->modes & ADJ_STATUS)		hrtimer_cancel(&leap_timer);	getnstimeofday(&ts);	write_seqlock_irq(&xtime_lock);	/* Save for later - semantics of adjtime is to return old value */	save_adjust = time_adjust;	/* If there are input parameters, then process them */	if (txc->modes) {		if (txc->modes & ADJ_STATUS) {			if ((time_status & STA_PLL) &&			    !(txc->status & STA_PLL)) {				time_state = TIME_OK;				time_status = STA_UNSYNC;			}			/* only set allowed bits */			time_status &= STA_RONLY;			time_status |= txc->status & ~STA_RONLY;			switch (time_state) {			case TIME_OK:			start_timer:				sec = ts.tv_sec;				if (time_status & STA_INS) {					time_state = TIME_INS;					sec += 86400 - sec % 86400;					hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);				} else if (time_status & STA_DEL) {					time_state = TIME_DEL;					sec += 86400 - (sec + 1) % 86400;					hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);				}				break;			case TIME_INS:			case TIME_DEL:				time_state = TIME_OK;				goto start_timer;				break;			case TIME_WAIT:				if (!(time_status & (STA_INS | STA_DEL)))					time_state = TIME_OK;				break;			case TIME_OOP:				hrtimer_restart(&leap_timer);				break;			}		}		if (txc->modes & ADJ_NANO)			time_status |= STA_NANO;		if (txc->modes & ADJ_MICRO)			time_status &= ~STA_NANO;		if (txc->modes & ADJ_FREQUENCY) {			time_freq = (s64)txc->freq * PPM_SCALE;			time_freq = min(time_freq, MAXFREQ_SCALED);			time_freq = max(time_freq, -MAXFREQ_SCALED);		}		if (txc->modes & ADJ_MAXERROR)			time_maxerror = txc->maxerror;		if (txc->modes & ADJ_ESTERROR)			time_esterror = txc->esterror;		if (txc->modes & ADJ_TIMECONST) {			time_constant = txc->constant;			if (!(time_status & STA_NANO))				time_constant += 4;			time_constant = min(time_constant, (long)MAXTC);			time_constant = max(time_constant, 0l);		}		if (txc->modes & ADJ_TAI && txc->constant > 0)			time_tai = txc->constant;		if (txc->modes & ADJ_OFFSET) {			if (txc->modes == ADJ_OFFSET_SINGLESHOT)				/* adjtime() is independent from ntp_adjtime() */				time_adjust = txc->offset;			else				ntp_update_offset(txc->offset);		}		if (txc->modes & ADJ_TICK)			tick_usec = txc->tick;		if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))			ntp_update_frequency();	}	result = time_state;	/* mostly `TIME_OK' */	if (time_status & (STA_UNSYNC|STA_CLOCKERR))		result = TIME_ERROR;	if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||	    (txc->modes == ADJ_OFFSET_SS_READ))		txc->offset = save_adjust;	else {		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,					  NTP_SCALE_SHIFT);		if (!(time_status & STA_NANO))			txc->offset /= NSEC_PER_USEC;	}	txc->freq	   = shift_right((s32)(time_freq >> PPM_SCALE_INV_SHIFT) *					 (s64)PPM_SCALE_INV,					 NTP_SCALE_SHIFT);	txc->maxerror	   = time_maxerror;	txc->esterror	   = time_esterror;	txc->status	   = time_status;	txc->constant	   = time_constant;	txc->precision	   = 1;	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;	txc->tick	   = tick_usec;	txc->tai	   = time_tai;	/* PPS is not implemented, so these are zero */	txc->ppsfreq	   = 0;	txc->jitter	   = 0;	txc->shift	   = 0;	txc->stabil	   = 0;	txc->jitcnt	   = 0;	txc->calcnt	   = 0;	txc->errcnt	   = 0;	txc->stbcnt	   = 0;	write_sequnlock_irq(&xtime_lock);	txc->time.tv_sec = ts.tv_sec;	txc->time.tv_usec = ts.tv_nsec;	if (!(time_status & STA_NANO))		txc->time.tv_usec /= NSEC_PER_USEC;	notify_cmos_timer();	return result;}static int __init ntp_tick_adj_setup(char *str){	ntp_tick_adj = simple_strtol(str, NULL, 0);	return 1;}__setup("ntp_tick_adj=", ntp_tick_adj_setup);void __init ntp_init(void){	ntp_clear();	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);	leap_timer.function = ntp_leap_second;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -