📄 tick-broadcast.c
字号:
/* * linux/kernel/time/tick-broadcast.c * * This file contains functions which emulate a local clock-event * device via a broadcast event source. * * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner * * This code is licenced under the GPL version 2. For details see * kernel-base/COPYING. */#include <linux/cpu.h>#include <linux/err.h>#include <linux/hrtimer.h>#include <linux/interrupt.h>#include <linux/percpu.h>#include <linux/profile.h>#include <linux/sched.h>#include <linux/tick.h>#include "tick-internal.h"/* * Broadcast support for broken x86 hardware, where the local apic * timer stops in C3 state. */struct tick_device tick_broadcast_device;static cpumask_t tick_broadcast_mask;static DEFINE_SPINLOCK(tick_broadcast_lock);static int tick_broadcast_force;#ifdef CONFIG_TICK_ONESHOTstatic void tick_broadcast_clear_oneshot(int cpu);#elsestatic inline void tick_broadcast_clear_oneshot(int cpu) { }#endif/* * Debugging: see timer_list.c */struct tick_device *tick_get_broadcast_device(void){ return &tick_broadcast_device;}cpumask_t *tick_get_broadcast_mask(void){ return &tick_broadcast_mask;}/* * Start the device in periodic mode */static void tick_broadcast_start_periodic(struct clock_event_device *bc){ if (bc) tick_setup_periodic(bc, 1);}/* * Check, if the device can be utilized as broadcast device: */int tick_check_broadcast_device(struct clock_event_device *dev){ if ((tick_broadcast_device.evtdev && tick_broadcast_device.evtdev->rating >= dev->rating) || (dev->features & CLOCK_EVT_FEAT_C3STOP)) return 0; clockevents_exchange_device(NULL, dev); tick_broadcast_device.evtdev = dev; if (!cpus_empty(tick_broadcast_mask)) tick_broadcast_start_periodic(dev); return 1;}/* * Check, if the device is the broadcast device */int tick_is_broadcast_device(struct clock_event_device *dev){ return (dev && tick_broadcast_device.evtdev == dev);}/* * Check, if the device is disfunctional and a place holder, which * needs to be handled by the broadcast device. */int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu){ unsigned long flags; int ret = 0; spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Devices might be registered with both periodic and oneshot * mode disabled. This signals, that the device needs to be * operated from the broadcast device and is a placeholder for * the cpu local device. */ if (!tick_device_is_functional(dev)) { dev->event_handler = tick_handle_periodic; cpu_set(cpu, tick_broadcast_mask); tick_broadcast_start_periodic(tick_broadcast_device.evtdev); ret = 1; } else { /* * When the new device is not affected by the stop * feature and the cpu is marked in the broadcast mask * then clear the broadcast bit. */ if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { int cpu = smp_processor_id(); cpu_clear(cpu, tick_broadcast_mask); tick_broadcast_clear_oneshot(cpu); } } spin_unlock_irqrestore(&tick_broadcast_lock, flags); return ret;}/* * Broadcast the event to the cpus, which are set in the mask */static void tick_do_broadcast(cpumask_t mask){ int cpu = smp_processor_id(); struct tick_device *td; /* * Check, if the current cpu is in the mask */ if (cpu_isset(cpu, mask)) { cpu_clear(cpu, mask); td = &per_cpu(tick_cpu_device, cpu); td->evtdev->event_handler(td->evtdev); } if (!cpus_empty(mask)) { /* * It might be necessary to actually check whether the devices * have different broadcast functions. For now, just use the * one of the first device. This works as long as we have this * misfeature only on x86 (lapic) */ cpu = first_cpu(mask); td = &per_cpu(tick_cpu_device, cpu); td->evtdev->broadcast(mask); }}/* * Periodic broadcast: * - invoke the broadcast handlers */static void tick_do_periodic_broadcast(void){ cpumask_t mask; spin_lock(&tick_broadcast_lock); cpus_and(mask, cpu_online_map, tick_broadcast_mask); tick_do_broadcast(mask); spin_unlock(&tick_broadcast_lock);}/* * Event handler for periodic broadcast ticks */static void tick_handle_periodic_broadcast(struct clock_event_device *dev){ ktime_t next; tick_do_periodic_broadcast(); /* * The device is in periodic mode. No reprogramming necessary: */ if (dev->mode == CLOCK_EVT_MODE_PERIODIC) return; /* * Setup the next period for devices, which do not have * periodic mode. We read dev->next_event first and add to it * when the event alrady expired. clockevents_program_event() * sets dev->next_event only when the event is really * programmed to the device. */ for (next = dev->next_event; ;) { next = ktime_add(next, tick_period); if (!clockevents_program_event(dev, next, ktime_get())) return; tick_do_periodic_broadcast(); }}/* * Powerstate information: The system enters/leaves a state, where * affected devices might stop */static void tick_do_broadcast_on_off(void *why){ struct clock_event_device *bc, *dev; struct tick_device *td; unsigned long flags, *reason = why; int cpu, bc_stopped; spin_lock_irqsave(&tick_broadcast_lock, flags); cpu = smp_processor_id(); td = &per_cpu(tick_cpu_device, cpu); dev = td->evtdev; bc = tick_broadcast_device.evtdev; /* * Is the device not affected by the powerstate ? */ if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) goto out; if (!tick_device_is_functional(dev)) goto out; bc_stopped = cpus_empty(tick_broadcast_mask); switch (*reason) { case CLOCK_EVT_NOTIFY_BROADCAST_ON: case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: if (!cpu_isset(cpu, tick_broadcast_mask)) { cpu_set(cpu, tick_broadcast_mask); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) clockevents_shutdown(dev); } if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) tick_broadcast_force = 1; break; case CLOCK_EVT_NOTIFY_BROADCAST_OFF: if (!tick_broadcast_force && cpu_isset(cpu, tick_broadcast_mask)) { cpu_clear(cpu, tick_broadcast_mask); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_setup_periodic(dev, 0); } break; } if (cpus_empty(tick_broadcast_mask)) { if (!bc_stopped) clockevents_shutdown(bc); } else if (bc_stopped) { if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_broadcast_start_periodic(bc); else tick_broadcast_setup_oneshot(bc); }out: spin_unlock_irqrestore(&tick_broadcast_lock, flags);}/* * Powerstate information: The system enters/leaves a state, where * affected devices might stop. */void tick_broadcast_on_off(unsigned long reason, int *oncpu){ if (!cpu_isset(*oncpu, cpu_online_map)) printk(KERN_ERR "tick-broadcast: ignoring broadcast for " "offline CPU #%d\n", *oncpu); else smp_call_function_single(*oncpu, tick_do_broadcast_on_off, &reason, 1);}/* * Set the periodic handler depending on broadcast on/off */void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast){ if (!broadcast) dev->event_handler = tick_handle_periodic; else dev->event_handler = tick_handle_periodic_broadcast;}/* * Remove a CPU from broadcasting */void tick_shutdown_broadcast(unsigned int *cpup){ struct clock_event_device *bc; unsigned long flags; unsigned int cpu = *cpup; spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; cpu_clear(cpu, tick_broadcast_mask); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { if (bc && cpus_empty(tick_broadcast_mask)) clockevents_shutdown(bc); } spin_unlock_irqrestore(&tick_broadcast_lock, flags);}void tick_suspend_broadcast(void){ struct clock_event_device *bc; unsigned long flags; spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc) clockevents_shutdown(bc); spin_unlock_irqrestore(&tick_broadcast_lock, flags);}int tick_resume_broadcast(void){ struct clock_event_device *bc; unsigned long flags; int broadcast = 0; spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc) { clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); switch (tick_broadcast_device.mode) { case TICKDEV_MODE_PERIODIC: if(!cpus_empty(tick_broadcast_mask)) tick_broadcast_start_periodic(bc); broadcast = cpu_isset(smp_processor_id(), tick_broadcast_mask); break; case TICKDEV_MODE_ONESHOT: broadcast = tick_resume_broadcast_oneshot(bc); break; } } spin_unlock_irqrestore(&tick_broadcast_lock, flags); return broadcast;}#ifdef CONFIG_TICK_ONESHOTstatic cpumask_t tick_broadcast_oneshot_mask;/* * Debugging: see timer_list.c */cpumask_t *tick_get_broadcast_oneshot_mask(void){ return &tick_broadcast_oneshot_mask;}static int tick_broadcast_set_event(ktime_t expires, int force){ struct clock_event_device *bc = tick_broadcast_device.evtdev; return tick_dev_program_event(bc, expires, force);}int tick_resume_broadcast_oneshot(struct clock_event_device *bc){ clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); return 0;}/* * Handle oneshot mode broadcasting */static void tick_handle_oneshot_broadcast(struct clock_event_device *dev){ struct tick_device *td; cpumask_t mask; ktime_t now, next_event; int cpu; spin_lock(&tick_broadcast_lock);again: dev->next_event.tv64 = KTIME_MAX; next_event.tv64 = KTIME_MAX; mask = CPU_MASK_NONE; now = ktime_get(); /* Find all expired events */ for_each_cpu_mask_nr(cpu, tick_broadcast_oneshot_mask) { td = &per_cpu(tick_cpu_device, cpu); if (td->evtdev->next_event.tv64 <= now.tv64) cpu_set(cpu, mask); else if (td->evtdev->next_event.tv64 < next_event.tv64) next_event.tv64 = td->evtdev->next_event.tv64; } /* * Wakeup the cpus which have an expired event. */ tick_do_broadcast(mask); /* * Two reasons for reprogram: * * - The global event did not expire any CPU local * events. This happens in dyntick mode, as the maximum PIT * delta is quite small. * * - There are pending events on sleeping CPUs which were not * in the event mask */ if (next_event.tv64 != KTIME_MAX) { /* * Rearm the broadcast device. If event expired, * repeat the above */ if (tick_broadcast_set_event(next_event, 0)) goto again; } spin_unlock(&tick_broadcast_lock);}/* * Powerstate information: The system enters/leaves a state, where * affected devices might stop */void tick_broadcast_oneshot_control(unsigned long reason){ struct clock_event_device *bc, *dev; struct tick_device *td; unsigned long flags; int cpu; spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Periodic mode does not care about the enter/exit of power * states */ if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) goto out; bc = tick_broadcast_device.evtdev; cpu = smp_processor_id(); td = &per_cpu(tick_cpu_device, cpu); dev = td->evtdev; if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) goto out; if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) { cpu_set(cpu, tick_broadcast_oneshot_mask); clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); if (dev->next_event.tv64 < bc->next_event.tv64) tick_broadcast_set_event(dev->next_event, 1); } } else { if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) { cpu_clear(cpu, tick_broadcast_oneshot_mask); clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); if (dev->next_event.tv64 != KTIME_MAX) tick_program_event(dev->next_event, 1); } }out: spin_unlock_irqrestore(&tick_broadcast_lock, flags);}/* * Reset the one shot broadcast for a cpu * * Called with tick_broadcast_lock held */static void tick_broadcast_clear_oneshot(int cpu){ cpu_clear(cpu, tick_broadcast_oneshot_mask);}static void tick_broadcast_init_next_event(cpumask_t *mask, ktime_t expires){ struct tick_device *td; int cpu; for_each_cpu_mask_nr(cpu, *mask) { td = &per_cpu(tick_cpu_device, cpu); if (td->evtdev) td->evtdev->next_event = expires; }}/** * tick_broadcast_setup_oneshot - setup the broadcast device */void tick_broadcast_setup_oneshot(struct clock_event_device *bc){ /* Set it up only once ! */ if (bc->event_handler != tick_handle_oneshot_broadcast) { int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC; int cpu = smp_processor_id(); cpumask_t mask; bc->event_handler = tick_handle_oneshot_broadcast; clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); /* Take the do_timer update */ tick_do_timer_cpu = cpu; /* * We must be careful here. There might be other CPUs * waiting for periodic broadcast. We need to set the * oneshot_mask bits for those and program the * broadcast device to fire. */ mask = tick_broadcast_mask; cpu_clear(cpu, mask); cpus_or(tick_broadcast_oneshot_mask, tick_broadcast_oneshot_mask, mask); if (was_periodic && !cpus_empty(mask)) { tick_broadcast_init_next_event(&mask, tick_next_period); tick_broadcast_set_event(tick_next_period, 1); } else bc->next_event.tv64 = KTIME_MAX; }}/* * Select oneshot operating mode for the broadcast device */void tick_broadcast_switch_to_oneshot(void){ struct clock_event_device *bc; unsigned long flags; spin_lock_irqsave(&tick_broadcast_lock, flags); tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; bc = tick_broadcast_device.evtdev; if (bc) tick_broadcast_setup_oneshot(bc); spin_unlock_irqrestore(&tick_broadcast_lock, flags);}/* * Remove a dead CPU from broadcasting */void tick_shutdown_broadcast_oneshot(unsigned int *cpup){ unsigned long flags; unsigned int cpu = *cpup; spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Clear the broadcast mask flag for the dead cpu, but do not * stop the broadcast device! */ cpu_clear(cpu, tick_broadcast_oneshot_mask); spin_unlock_irqrestore(&tick_broadcast_lock, flags);}/* * Check, whether the broadcast device is in one shot mode */int tick_broadcast_oneshot_active(void){ return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -