📄 cpu.c
字号:
/* CPU control. * (C) 2001, 2002, 2003, 2004 Rusty Russell * * This code is licenced under the GPL. */#include <linux/proc_fs.h>#include <linux/smp.h>#include <linux/init.h>#include <linux/notifier.h>#include <linux/sched.h>#include <linux/unistd.h>#include <linux/cpu.h>#include <linux/module.h>#include <linux/kthread.h>#include <linux/stop_machine.h>#include <linux/mutex.h>/* * Represents all cpu's present in the system * In systems capable of hotplug, this map could dynamically grow * as new cpu's are detected in the system via any platform specific * method, such as ACPI for e.g. */cpumask_t cpu_present_map __read_mostly;EXPORT_SYMBOL(cpu_present_map);#ifndef CONFIG_SMP/* * Represents all cpu's that are currently online. */cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;EXPORT_SYMBOL(cpu_online_map);cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;EXPORT_SYMBOL(cpu_possible_map);#else /* CONFIG_SMP *//* Serializes the updates to cpu_online_map, cpu_present_map */static DEFINE_MUTEX(cpu_add_remove_lock);static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain);/* If set, cpu_up and cpu_down will return -EBUSY and do nothing. * Should always be manipulated under cpu_add_remove_lock */static int cpu_hotplug_disabled;static struct { struct task_struct *active_writer; struct mutex lock; /* Synchronizes accesses to refcount, */ /* * Also blocks the new readers during * an ongoing cpu hotplug operation. */ int refcount;} cpu_hotplug;void __init cpu_hotplug_init(void){ cpu_hotplug.active_writer = NULL; mutex_init(&cpu_hotplug.lock); cpu_hotplug.refcount = 0;}cpumask_t cpu_active_map;#ifdef CONFIG_HOTPLUG_CPUvoid get_online_cpus(void){ might_sleep(); if (cpu_hotplug.active_writer == current) return; mutex_lock(&cpu_hotplug.lock); cpu_hotplug.refcount++; mutex_unlock(&cpu_hotplug.lock);}EXPORT_SYMBOL_GPL(get_online_cpus);void put_online_cpus(void){ if (cpu_hotplug.active_writer == current) return; mutex_lock(&cpu_hotplug.lock); if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer)) wake_up_process(cpu_hotplug.active_writer); mutex_unlock(&cpu_hotplug.lock);}EXPORT_SYMBOL_GPL(put_online_cpus);#endif /* CONFIG_HOTPLUG_CPU *//* * The following two API's must be used when attempting * to serialize the updates to cpu_online_map, cpu_present_map. */void cpu_maps_update_begin(void){ mutex_lock(&cpu_add_remove_lock);}void cpu_maps_update_done(void){ mutex_unlock(&cpu_add_remove_lock);}/* * This ensures that the hotplug operation can begin only when the * refcount goes to zero. * * Note that during a cpu-hotplug operation, the new readers, if any, * will be blocked by the cpu_hotplug.lock * * Since cpu_hotplug_begin() is always called after invoking * cpu_maps_update_begin(), we can be sure that only one writer is active. * * Note that theoretically, there is a possibility of a livelock: * - Refcount goes to zero, last reader wakes up the sleeping * writer. * - Last reader unlocks the cpu_hotplug.lock. * - A new reader arrives at this moment, bumps up the refcount. * - The writer acquires the cpu_hotplug.lock finds the refcount * non zero and goes to sleep again. * * However, this is very difficult to achieve in practice since * get_online_cpus() not an api which is called all that often. * */static void cpu_hotplug_begin(void){ cpu_hotplug.active_writer = current; for (;;) { mutex_lock(&cpu_hotplug.lock); if (likely(!cpu_hotplug.refcount)) break; __set_current_state(TASK_UNINTERRUPTIBLE); mutex_unlock(&cpu_hotplug.lock); schedule(); }}static void cpu_hotplug_done(void){ cpu_hotplug.active_writer = NULL; mutex_unlock(&cpu_hotplug.lock);}/* Need to know about CPUs going up/down? */int __ref register_cpu_notifier(struct notifier_block *nb){ int ret; cpu_maps_update_begin(); ret = raw_notifier_chain_register(&cpu_chain, nb); cpu_maps_update_done(); return ret;}#ifdef CONFIG_HOTPLUG_CPUEXPORT_SYMBOL(register_cpu_notifier);void __ref unregister_cpu_notifier(struct notifier_block *nb){ cpu_maps_update_begin(); raw_notifier_chain_unregister(&cpu_chain, nb); cpu_maps_update_done();}EXPORT_SYMBOL(unregister_cpu_notifier);static inline void check_for_tasks(int cpu){ struct task_struct *p; write_lock_irq(&tasklist_lock); for_each_process(p) { if (task_cpu(p) == cpu && (!cputime_eq(p->utime, cputime_zero) || !cputime_eq(p->stime, cputime_zero))) printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d\ (state = %ld, flags = %x) \n", p->comm, task_pid_nr(p), cpu, p->state, p->flags); } write_unlock_irq(&tasklist_lock);}struct take_cpu_down_param { unsigned long mod; void *hcpu;};/* Take this CPU down. */static int __ref take_cpu_down(void *_param){ struct take_cpu_down_param *param = _param; int err; raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, param->hcpu); /* Ensure this CPU doesn't handle any more interrupts. */ err = __cpu_disable(); if (err < 0) return err; /* Force idle task to run as soon as we yield: it should immediately notice cpu is offline and die quickly. */ sched_idle_next(); return 0;}/* Requires cpu_add_remove_lock to be held */static int __ref _cpu_down(unsigned int cpu, int tasks_frozen){ int err, nr_calls = 0; cpumask_t old_allowed, tmp; void *hcpu = (void *)(long)cpu; unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; struct take_cpu_down_param tcd_param = { .mod = mod, .hcpu = hcpu, }; if (num_online_cpus() == 1) return -EBUSY; if (!cpu_online(cpu)) return -EINVAL; cpu_hotplug_begin(); err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); if (err == NOTIFY_BAD) { nr_calls--; __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); printk("%s: attempt to take down CPU %u failed\n", __func__, cpu); err = -EINVAL; goto out_release; } /* Ensure that we are not runnable on dying cpu */ old_allowed = current->cpus_allowed; cpus_setall(tmp); cpu_clear(cpu, tmp); set_cpus_allowed_ptr(current, &tmp); tmp = cpumask_of_cpu(cpu); err = __stop_machine(take_cpu_down, &tcd_param, &tmp); if (err) { /* CPU didn't die: tell everyone. Can't complain. */ if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, hcpu) == NOTIFY_BAD) BUG(); goto out_allowed; } BUG_ON(cpu_online(cpu)); /* Wait for it to sleep (leaving idle task). */ while (!idle_cpu(cpu)) yield(); /* This actually kills the CPU. */ __cpu_die(cpu); /* CPU is completely dead: tell everyone. Too late to complain. */ if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod, hcpu) == NOTIFY_BAD) BUG(); check_for_tasks(cpu);out_allowed: set_cpus_allowed_ptr(current, &old_allowed);out_release: cpu_hotplug_done(); if (!err) { if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod, hcpu) == NOTIFY_BAD) BUG(); } return err;}int __ref cpu_down(unsigned int cpu){ int err = 0; cpu_maps_update_begin(); if (cpu_hotplug_disabled) { err = -EBUSY; goto out; } cpu_clear(cpu, cpu_active_map); /* * Make sure the all cpus did the reschedule and are not * using stale version of the cpu_active_map. * This is not strictly necessary becuase stop_machine() * that we run down the line already provides the required * synchronization. But it's really a side effect and we do not * want to depend on the innards of the stop_machine here. */ synchronize_sched(); err = _cpu_down(cpu, 0); if (cpu_online(cpu)) cpu_set(cpu, cpu_active_map);out: cpu_maps_update_done(); return err;}EXPORT_SYMBOL(cpu_down);#endif /*CONFIG_HOTPLUG_CPU*//* Requires cpu_add_remove_lock to be held */static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen){ int ret, nr_calls = 0; void *hcpu = (void *)(long)cpu; unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; if (cpu_online(cpu) || !cpu_present(cpu)) return -EINVAL; cpu_hotplug_begin(); ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); if (ret == NOTIFY_BAD) { nr_calls--; printk("%s: attempt to bring up CPU %u failed\n", __func__, cpu); ret = -EINVAL; goto out_notify; } /* Arch-specific enabling code. */ ret = __cpu_up(cpu); if (ret != 0) goto out_notify; BUG_ON(!cpu_online(cpu)); cpu_set(cpu, cpu_active_map); /* Now call notifier in preparation. */ raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu);out_notify: if (ret != 0) __raw_notifier_call_chain(&cpu_chain, CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); cpu_hotplug_done(); return ret;}int __cpuinit cpu_up(unsigned int cpu){ int err = 0; if (!cpu_isset(cpu, cpu_possible_map)) { printk(KERN_ERR "can't online cpu %d because it is not " "configured as may-hotadd at boot time\n", cpu);#if defined(CONFIG_IA64) || defined(CONFIG_X86_64) printk(KERN_ERR "please check additional_cpus= boot " "parameter\n");#endif return -EINVAL; } cpu_maps_update_begin(); if (cpu_hotplug_disabled) { err = -EBUSY; goto out; } err = _cpu_up(cpu, 0);out: cpu_maps_update_done(); return err;}#ifdef CONFIG_PM_SLEEP_SMPstatic cpumask_t frozen_cpus;int disable_nonboot_cpus(void){ int cpu, first_cpu, error = 0; cpu_maps_update_begin(); first_cpu = first_cpu(cpu_online_map); /* We take down all of the non-boot CPUs in one shot to avoid races * with the userspace trying to use the CPU hotplug at the same time */ cpus_clear(frozen_cpus); printk("Disabling non-boot CPUs ...\n"); for_each_online_cpu(cpu) { if (cpu == first_cpu) continue; error = _cpu_down(cpu, 1); if (!error) { cpu_set(cpu, frozen_cpus); printk("CPU%d is down\n", cpu); } else { printk(KERN_ERR "Error taking CPU%d down: %d\n", cpu, error); break; } } if (!error) { BUG_ON(num_online_cpus() > 1); /* Make sure the CPUs won't be enabled by someone else */ cpu_hotplug_disabled = 1; } else { printk(KERN_ERR "Non-boot CPUs are not disabled\n"); } cpu_maps_update_done(); return error;}void __ref enable_nonboot_cpus(void){ int cpu, error; /* Allow everyone to use the CPU hotplug again */ cpu_maps_update_begin(); cpu_hotplug_disabled = 0; if (cpus_empty(frozen_cpus)) goto out; printk("Enabling non-boot CPUs ...\n"); for_each_cpu_mask_nr(cpu, frozen_cpus) { error = _cpu_up(cpu, 1); if (!error) { printk("CPU%d is up\n", cpu); continue; } printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); } cpus_clear(frozen_cpus);out: cpu_maps_update_done();}#endif /* CONFIG_PM_SLEEP_SMP */#endif /* CONFIG_SMP *//* * cpu_bit_bitmap[] is a special, "compressed" data structure that * represents all NR_CPUS bits binary values of 1<<nr. * * It is used by cpumask_of_cpu() to get a constant address to a CPU * mask value that has a single bit set only. *//* cpu_bit_bitmap[0] is empty - so we can back into it */#define MASK_DECLARE_1(x) [x+1][0] = 1UL << (x)#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { MASK_DECLARE_8(0), MASK_DECLARE_8(8), MASK_DECLARE_8(16), MASK_DECLARE_8(24),#if BITS_PER_LONG > 32 MASK_DECLARE_8(32), MASK_DECLARE_8(40), MASK_DECLARE_8(48), MASK_DECLARE_8(56),#endif};EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -