⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sched_stats.h

📁 Kernel code of linux kernel
💻 H
字号:
#ifdef CONFIG_SCHEDSTATS/* * bump this up when changing the output format or the meaning of an existing * format, so that tools can adapt (or abort) */#define SCHEDSTAT_VERSION 14static int show_schedstat(struct seq_file *seq, void *v){	int cpu;	int mask_len = (NR_CPUS/32 + 1) * 9;	char *mask_str = kmalloc(mask_len, GFP_KERNEL);	if (mask_str == NULL)		return -ENOMEM;	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);	seq_printf(seq, "timestamp %lu\n", jiffies);	for_each_online_cpu(cpu) {		struct rq *rq = cpu_rq(cpu);#ifdef CONFIG_SMP		struct sched_domain *sd;		int dcount = 0;#endif		/* runqueue-specific stats */		seq_printf(seq,		    "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu",		    cpu, rq->yld_both_empty,		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count,		    rq->sched_switch, rq->sched_count, rq->sched_goidle,		    rq->ttwu_count, rq->ttwu_local,		    rq->rq_sched_info.cpu_time,		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);		seq_printf(seq, "\n");#ifdef CONFIG_SMP		/* domain-specific stats */		preempt_disable();		for_each_domain(cpu, sd) {			enum cpu_idle_type itype;			cpumask_scnprintf(mask_str, mask_len, sd->span);			seq_printf(seq, "domain%d %s", dcount++, mask_str);			for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;					itype++) {				seq_printf(seq, " %u %u %u %u %u %u %u %u",				    sd->lb_count[itype],				    sd->lb_balanced[itype],				    sd->lb_failed[itype],				    sd->lb_imbalance[itype],				    sd->lb_gained[itype],				    sd->lb_hot_gained[itype],				    sd->lb_nobusyq[itype],				    sd->lb_nobusyg[itype]);			}			seq_printf(seq,				   " %u %u %u %u %u %u %u %u %u %u %u %u\n",			    sd->alb_count, sd->alb_failed, sd->alb_pushed,			    sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,			    sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,			    sd->ttwu_wake_remote, sd->ttwu_move_affine,			    sd->ttwu_move_balance);		}		preempt_enable();#endif	}	kfree(mask_str);	return 0;}static int schedstat_open(struct inode *inode, struct file *file){	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);	char *buf = kmalloc(size, GFP_KERNEL);	struct seq_file *m;	int res;	if (!buf)		return -ENOMEM;	res = single_open(file, show_schedstat, NULL);	if (!res) {		m = file->private_data;		m->buf = buf;		m->size = size;	} else		kfree(buf);	return res;}const struct file_operations proc_schedstat_operations = {	.open    = schedstat_open,	.read    = seq_read,	.llseek  = seq_lseek,	.release = single_release,};/* * Expects runqueue lock to be held for atomicity of update */static inline voidrq_sched_info_arrive(struct rq *rq, unsigned long long delta){	if (rq) {		rq->rq_sched_info.run_delay += delta;		rq->rq_sched_info.pcount++;	}}/* * Expects runqueue lock to be held for atomicity of update */static inline voidrq_sched_info_depart(struct rq *rq, unsigned long long delta){	if (rq)		rq->rq_sched_info.cpu_time += delta;}static inline voidrq_sched_info_dequeued(struct rq *rq, unsigned long long delta){	if (rq)		rq->rq_sched_info.run_delay += delta;}# define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)# define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)# define schedstat_set(var, val)	do { var = (val); } while (0)#else /* !CONFIG_SCHEDSTATS */static inline voidrq_sched_info_arrive(struct rq *rq, unsigned long long delta){}static inline voidrq_sched_info_dequeued(struct rq *rq, unsigned long long delta){}static inline voidrq_sched_info_depart(struct rq *rq, unsigned long long delta){}# define schedstat_inc(rq, field)	do { } while (0)# define schedstat_add(rq, field, amt)	do { } while (0)# define schedstat_set(var, val)	do { } while (0)#endif#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)static inline void sched_info_reset_dequeued(struct task_struct *t){	t->sched_info.last_queued = 0;}/* * Called when a process is dequeued from the active array and given * the cpu.  We should note that with the exception of interactive * tasks, the expired queue will become the active queue after the active * queue is empty, without explicitly dequeuing and requeuing tasks in the * expired queue.  (Interactive tasks may be requeued directly to the * active queue, thus delaying tasks in the expired queue from running; * see scheduler_tick()). * * Though we are interested in knowing how long it was from the *first* time a * task was queued to the time that it finally hit a cpu, we call this routine * from dequeue_task() to account for possible rq->clock skew across cpus. The * delta taken on each cpu would annul the skew. */static inline void sched_info_dequeued(struct task_struct *t){	unsigned long long now = task_rq(t)->clock, delta = 0;	if (unlikely(sched_info_on()))		if (t->sched_info.last_queued)			delta = now - t->sched_info.last_queued;	sched_info_reset_dequeued(t);	t->sched_info.run_delay += delta;	rq_sched_info_dequeued(task_rq(t), delta);}/* * Called when a task finally hits the cpu.  We can now calculate how * long it was waiting to run.  We also note when it began so that we * can keep stats on how long its timeslice is. */static void sched_info_arrive(struct task_struct *t){	unsigned long long now = task_rq(t)->clock, delta = 0;	if (t->sched_info.last_queued)		delta = now - t->sched_info.last_queued;	sched_info_reset_dequeued(t);	t->sched_info.run_delay += delta;	t->sched_info.last_arrival = now;	t->sched_info.pcount++;	rq_sched_info_arrive(task_rq(t), delta);}/* * Called when a process is queued into either the active or expired * array.  The time is noted and later used to determine how long we * had to wait for us to reach the cpu.  Since the expired queue will * become the active queue after active queue is empty, without dequeuing * and requeuing any tasks, we are interested in queuing to either. It * is unusual but not impossible for tasks to be dequeued and immediately * requeued in the same or another array: this can happen in sched_yield(), * set_user_nice(), and even load_balance() as it moves tasks from runqueue * to runqueue. * * This function is only called from enqueue_task(), but also only updates * the timestamp if it is already not set.  It's assumed that * sched_info_dequeued() will clear that stamp when appropriate. */static inline void sched_info_queued(struct task_struct *t){	if (unlikely(sched_info_on()))		if (!t->sched_info.last_queued)			t->sched_info.last_queued = task_rq(t)->clock;}/* * Called when a process ceases being the active-running process, either * voluntarily or involuntarily.  Now we can calculate how long we ran. * Also, if the process is still in the TASK_RUNNING state, call * sched_info_queued() to mark that it has now again started waiting on * the runqueue. */static inline void sched_info_depart(struct task_struct *t){	unsigned long long delta = task_rq(t)->clock -					t->sched_info.last_arrival;	t->sched_info.cpu_time += delta;	rq_sched_info_depart(task_rq(t), delta);	if (t->state == TASK_RUNNING)		sched_info_queued(t);}/* * Called when tasks are switched involuntarily due, typically, to expiring * their time slice.  (This may also be called when switching to or from * the idle task.)  We are only called when prev != next. */static inline void__sched_info_switch(struct task_struct *prev, struct task_struct *next){	struct rq *rq = task_rq(prev);	/*	 * prev now departs the cpu.  It's not interesting to record	 * stats about how efficient we were at scheduling the idle	 * process, however.	 */	if (prev != rq->idle)		sched_info_depart(prev);	if (next != rq->idle)		sched_info_arrive(next);}static inline voidsched_info_switch(struct task_struct *prev, struct task_struct *next){	if (unlikely(sched_info_on()))		__sched_info_switch(prev, next);}#else#define sched_info_queued(t)			do { } while (0)#define sched_info_reset_dequeued(t)	do { } while (0)#define sched_info_dequeued(t)			do { } while (0)#define sched_info_switch(t, next)		do { } while (0)#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -