⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kg_rsa.c

📁 cryptlib安全工具包
💻 C
📖 第 1 页 / 共 2 页
字号:
****************************************************************************/

/* Perform validity checks on the private key.  We have to make the PKC_INFO
   data non-const because the bignum code wants to modify some of the values
   as it's working with them */

CHECK_RETVAL_BOOL STDC_NONNULL_ARG( ( 1 ) ) \
static BOOLEAN checkRSAPrivateKeyComponents( INOUT PKC_INFO *pkcInfo )
	{
	BIGNUM *n = &pkcInfo->rsaParam_n, *e = &pkcInfo->rsaParam_e;
	BIGNUM *d = &pkcInfo->rsaParam_d, *p = &pkcInfo->rsaParam_p;
	BIGNUM *q = &pkcInfo->rsaParam_q;
	BIGNUM *p1 = &pkcInfo->tmp1, *q1 = &pkcInfo->tmp2, *tmp = &pkcInfo->tmp3;
	const BN_ULONG eWord = BN_get_word( e );
	int bnStatus = BN_STATUS;

	assert( isWritePtr( pkcInfo, sizeof( PKC_INFO ) ) );

	/* Calculate p - 1, q - 1 */
	CKPTR( BN_copy( p1, p ) );
	CK( BN_sub_word( p1, 1 ) );
	CKPTR( BN_copy( q1, q ) );
	CK( BN_sub_word( q1, 1 ) );
	if( bnStatusError( bnStatus ) )
		return( FALSE );

	/* Verify that n = p * q */
	CK( BN_mul( tmp, p, q, pkcInfo->bnCTX ) );
	if( bnStatusError( bnStatus ) || BN_cmp( n, tmp ) != 0 )
		return( FALSE );

	/* Verify that:

		p, q < d
		( d * e ) mod p-1 == 1 
		( d * e ) mod q-1 == 1
	
	   Some implementations don't store d since it's not needed when the CRT
	   shortcut is used, so we can only perform this check if d is present */
	if( !BN_is_zero( d ) )
		{
		if( BN_cmp( p, d ) >= 0 || BN_cmp( q, d ) >= 0 )
			return( FALSE );
		CK( BN_mod_mul( tmp, d, e, p1, pkcInfo->bnCTX ) );
		if( bnStatusError( bnStatus ) || !BN_is_one( tmp ) )
			return( FALSE );
		CK( BN_mod_mul( tmp, d, e, q1, pkcInfo->bnCTX ) );
		if( bnStatusError( bnStatus ) || !BN_is_one( tmp ) )
			return( FALSE );
		}

#ifdef USE_FIPS140
	/* Verify that sizeof( d ) > sizeof( p ) / 2, a weird requirement set by 
	   FIPS 186-3.  This is one of those things where the probability of the
	   check going wrong in some way outweighs the probability of the 
	   situation actually occurring by about two dozen orders of magnitude 
	   so we only do this when we have to.  The fact that this parameter is
	   never even used makes the check even less meaningful */
	if( BN_num_bits( d ) <= pkcInfo->keySizeBits )
		return( CRYPT_ERROR_FAILED );
#endif /* USE_FIPS140 */

	/* Verify that ( q * u ) mod p == 1 */
	CK( BN_mod_mul( tmp, q, &pkcInfo->rsaParam_u, p, pkcInfo->bnCTX ) );
	if( bnStatusError( bnStatus ) || !BN_is_one( tmp ) )
		return( FALSE );

	/* A very small number of systems/compilers can't handle 32 * 32 -> 64
	   ops, which means that we have to use 16-bit bignum components.  For
	   the common case where e = F4 the value won't fit into a bignum
	   component so we have to use the full BN_mod() form of the checks that 
	   are carried out further on */
#ifdef SIXTEEN_BIT
	CK( BN_mod( tmp, p1, e, pkcInfo->bnCTX ) );
	if( bnStatusError( bnStatus ) || BN_is_zero( tmp ) )
		return( FALSE );
	CK( BN_mod( tmp, q1, e, pkcInfo->bnCTX ) );
	if( bnStatusError( bnStatus ) || BN_is_zero( tmp ) )
		return( FALSE );
	return( TRUE );
#endif /* Systems without 32 * 32 -> 64 ops */

	/* We don't allow bignum e values, both because it doesn't make sense to
	   use them and because the tests below assume that e will fit into a
	   machine word */
	if( eWord < MIN_PUBLIC_EXPONENT || \
		BN_num_bits( e ) >= bytesToBits( sizeof( int ) ) )
		return( FALSE );

	/* Verify that e is a small prime.  The easiest way to do this would be
	   to compare it to a set of standard values but there'll always be some
	   wierdo implementation that uses a nonstandard value and that would
	   therefore fail the test so we perform a quick check that just tries
	   dividing by all primes below 1000.  In addition since in almost all
	   cases e will be one of a standard set of values we don't bother with 
	   the trial division unless it's an unusual value.  This test isn't
	   perfect, but it'll catch obvious non-primes.

	   Note that OpenSSH hardcodes e = 35 which is both a suboptimal
	   exponent (it's less efficient that a safer value like 257 or F4)
	   and non-prime.  The reason for this was that the original SSH used an
	   e relatively prime to (p-1)(q-1), choosing odd (in both senses of the
	   word) numbers > 31.  33 or 35 probably ended up being chosen 
	   frequently so it was hardcoded into OpenSSH.  In order to use
	   OpenSSH keys that use this odd value you need to comment out this 
	   test and the following one */
	if( eWord != 17 && eWord != 257 && eWord != 65537L )
		{
		static const unsigned int FAR_BSS smallPrimes[] = {
			   2,   3,   5,   7,  11,  13,  17,  19,
			  23,  29,  31,  37,  41,  43,  47,  53,
			  59,  61,  67,  71,  73,  79,  83,  89,
			  97, 101, 103, 107, 109, 113, 127, 131,
			 137, 139, 149, 151, 157, 163, 167, 173,
			 179, 181, 191, 193, 197, 199, 211, 223,
			 227, 229, 233, 239, 241, 251, 257, 263,
			 269, 271, 277, 281, 283, 293, 307, 311,
			 313, 317, 331, 337, 347, 349, 353, 359,
			 367, 373, 379, 383, 389, 397, 401, 409,
			 419, 421, 431, 433, 439, 443, 449, 457,
			 461, 463, 467, 479, 487, 491, 499, 503,
			 509, 521, 523, 541, 547, 557, 563, 569,
			 571, 577, 587, 593, 599, 601, 607, 613,
			 617, 619, 631, 641, 643, 647, 653, 659,
			 661, 673, 677, 683, 691, 701, 709, 719,
			 727, 733, 739, 743, 751, 757, 761, 769,
			 773, 787, 797, 809, 811, 821, 823, 827,
			 829, 839, 853, 857, 859, 863, 877, 881,
			 883, 887, 907, 911, 919, 929, 937, 941,
			 947, 953, 967, 971, 977, 983, 991, 997,
			 0, 0
			 };
		int i;

		for( i = 0; 
			 eWord > smallPrimes[ i ] && smallPrimes[ i ] > 0 && \
				i < FAILSAFE_ARRAYSIZE( smallPrimes, int ); 
			 i++ )
			{
			if( eWord % smallPrimes[ i ] == 0 )
				return( FALSE );
			}
		ENSURES_B( i < FAILSAFE_ARRAYSIZE( smallPrimes, int ) );
		}

	/* Verify that gcd( ( p - 1 )( q - 1), e ) == 1
	
	   Since e is a small prime, we can do this much more efficiently by 
	   checking that:

		( p - 1 ) mod e != 0
		( q - 1 ) mod e != 0 */
	if( BN_mod_word( p1, eWord ) == 0 || BN_mod_word( q1, eWord ) == 0 )
		return( FALSE );

	/* Verify that e1 < p, e2 < q */
	if( BN_cmp( &pkcInfo->rsaParam_exponent1, p ) >= 0 || \
		BN_cmp( &pkcInfo->rsaParam_exponent2, q ) >= 0 )
		return( FALSE );

	return( TRUE );
	}

/* Initialise and check an RSA key.  Unlike the DLP check this function
   combines the initialisation with the checking, since the two are deeply
   intertwingled */

CHECK_RETVAL STDC_NONNULL_ARG( ( 1 ) ) \
int initCheckRSAkey( INOUT CONTEXT_INFO *contextInfoPtr )
	{
	PKC_INFO *pkcInfo = contextInfoPtr->ctxPKC;
	BIGNUM *n = &pkcInfo->rsaParam_n, *e = &pkcInfo->rsaParam_e;
	BIGNUM *d = &pkcInfo->rsaParam_d, *p = &pkcInfo->rsaParam_p;
	BIGNUM *q = &pkcInfo->rsaParam_q;
	const BOOLEAN isPrivateKey = \
		( contextInfoPtr->flags & CONTEXT_FLAG_ISPUBLICKEY ) ? FALSE : TRUE;
	int length, bnStatus = BN_STATUS, status = CRYPT_OK;

	assert( isWritePtr( contextInfoPtr, sizeof( CONTEXT_INFO ) ) );

	/* Make sure that the necessary key parameters have been initialised */
	if( BN_is_zero( n ) || BN_is_zero( e ) )
		return( CRYPT_ARGERROR_STR1 );
	if( isPrivateKey )
		{
		if( BN_is_zero( p ) || BN_is_zero( q ) )
			return( CRYPT_ARGERROR_STR1 );
		if( BN_is_zero( d ) && \
			( BN_is_zero( &pkcInfo->rsaParam_exponent1 ) || \
			  BN_is_zero( &pkcInfo->rsaParam_exponent2 ) ) )
			{
			/* Either d or e1 et al must be present, d isn't needed if we
			   have e1 et al and e1 et al can be reconstructed from d */
			return( CRYPT_ARGERROR_STR1 );
			}
		}

	/* Make sure that the key paramters are valid:

		nLen >= RSAPARAM_MIN_N (= MIN_PKCSIZE), 
		nLen <= RSAPARAM_MAX_N (= CRYPT_MAX_PKCSIZE)

		e >= MIN_PUBLIC_EXPONENT, eLen <= RSAPARAM_MAX_E (= 32 bits).  The 
			latter check is to preclude DoS attacks due to ridiculously 
			large e values.
		
		|p-q| > 128 bits.  FIPS 186-3 requires only 100 bits, this check is
			slightly more conservative but in any case both values are 
			somewhat arbitrary and are merely meant to delimit "not too 
			close".
		
	   BN_get_word() works even on 16-bit systems because it returns 
	   BN_MASK2 (== UINT_MAX) if the value can't be represented in a machine
	   word */
	length = BN_num_bytes( n );
	if( isShortPKCKey( length ) )
		{
		/* Special-case handling for insecure-sized public keys */
		return( CRYPT_ERROR_NOSECURE );
		}
	if( length < RSAPARAM_MIN_N || length > RSAPARAM_MAX_N )
		return( CRYPT_ARGERROR_STR1 );
	if( BN_get_word( e ) < MIN_PUBLIC_EXPONENT || \
		BN_num_bytes( e ) > RSAPARAM_MAX_E )
		return( CRYPT_ARGERROR_STR1 );
	if( isPrivateKey )
		{
		/* Make sure that p and q differ by at least 128 bits */
		CKPTR( BN_copy( &pkcInfo->tmp1, p ) );
		CK( BN_sub( &pkcInfo->tmp1, &pkcInfo->tmp1, q ) );
		if( bnStatusError( bnStatus ) || \
			BN_num_bits( &pkcInfo->tmp1 ) < 128 )
			return( CRYPT_ARGERROR_STR1 );
		}

	/* If we're not using PKCS keys that have exponent1 = d mod ( p - 1 )
	   and exponent2 = d mod ( q - 1 ) precalculated, evaluate them now.
	   If there's no u precalculated, evaluate it now */
	if( isPrivateKey )
		{
		if( BN_is_zero( &pkcInfo->rsaParam_exponent1 ) )
			{
			BIGNUM *exponent1 = &pkcInfo->rsaParam_exponent1;
			BIGNUM *exponent2 = &pkcInfo->rsaParam_exponent2;

			CKPTR( BN_copy( exponent1, p ) );/* exponent1 = d mod ( p - 1 ) ) */
			CK( BN_sub_word( exponent1, 1 ) );
			CK( BN_mod( exponent1, d, exponent1, pkcInfo->bnCTX ) );
			CKPTR( BN_copy( exponent2, q ) );/* exponent2 = d mod ( q - 1 ) ) */
			CK( BN_sub_word( exponent2, 1 ) );
			CK( BN_mod( exponent2, d, exponent2, pkcInfo->bnCTX ) );
			if( bnStatusError( bnStatus ) )
				return( getBnStatus( bnStatus ) );
			}
		if( BN_is_zero( &pkcInfo->rsaParam_u ) )
			{
			CKPTR( BN_mod_inverse( &pkcInfo->rsaParam_u, q, p,
								   pkcInfo->bnCTX ) );
			if( bnStatusError( bnStatus ) )
				return( getBnStatus( bnStatus ) );
			}
		}

	/* Make sure that p and q are set up correctly for the CRT decryption and
	   precompute the Montgomery forms */
	if( isPrivateKey )
		status = fixCRTvalues( pkcInfo, TRUE );
	if( cryptStatusOK( status ) )
		status = getRSAMontgomery( pkcInfo, isPrivateKey );
	if( cryptStatusError( status ) )
		return( status );

	/* Now that we've got the various other values set up, perform further
	   validity checks on the private key */
	if( isPrivateKey && !checkRSAPrivateKeyComponents( pkcInfo ) )
		return( CRYPT_ARGERROR_STR1 );

	pkcInfo->keySizeBits = BN_num_bits( &pkcInfo->rsaParam_n );

	/* Enable side-channel protection if required */
	if( contextInfoPtr->flags & CONTEXT_FLAG_SIDECHANNELPROTECTION )
		status = enableSidechannelProtection( pkcInfo, isPrivateKey );
	return( status );
	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -