⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ide.c

📁 ARM 嵌入式 系统 设计与实例开发 实验教材 二源码
💻 C
📖 第 1 页 / 共 2 页
字号:
        }#endif}static void e100_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount){	ide_ioreg_t data_reg = IDE_DATA_REG;		D(printk("atapi_output_bytes, dreg 0x%x, buffer 0x%x, count %d\n",		 data_reg, buffer, bytecount));	if(bytecount & 1) {		printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);		bytecount++;	}	/* make sure the DMA channel is available */	RESET_DMA(ATA_TX_DMA_NBR);	WAIT_DMA(ATA_TX_DMA_NBR); 		/* setup DMA descriptor */		mydescr.sw_len = bytecount;	mydescr.ctrl   = d_eol;	mydescr.buf    = virt_to_phys(buffer);	/* start the dma channel */		*R_DMA_CH2_FIRST = virt_to_phys(&mydescr);	*R_DMA_CH2_CMD   = IO_STATE(R_DMA_CH2_CMD, cmd, start);		/* initiate a multi word dma write using PIO handshaking */		*R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1);		*R_ATA_CTRL_DATA = data_reg |		IO_STATE(R_ATA_CTRL_DATA, rw,       write) |		IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma) |		IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |		IO_STATE(R_ATA_CTRL_DATA, multi,    on) |		IO_STATE(R_ATA_CTRL_DATA, dma_size, word);		/* wait for completion */		LED_DISK_WRITE(1);	WAIT_DMA(ATA_TX_DMA_NBR);	LED_DISK_WRITE(0);#if 0        /* old polled write code - see comment in input_bytes */	/* wait for busy flag */        while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy));         /* initiate a multi word write */        *R_ATA_TRANSFER_CNT = bytecount >> 1;        ctrl = data_reg |                IO_STATE(R_ATA_CTRL_DATA, rw,       write) |                IO_STATE(R_ATA_CTRL_DATA, src_dst,  register) |                IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |                IO_STATE(R_ATA_CTRL_DATA, multi,    on) |                IO_STATE(R_ATA_CTRL_DATA, dma_size, word);                LED_DISK_WRITE(1);                /* Etrax will set busy = 1 until the multi pio transfer has finished         * and tr_rdy = 1 after each succesful word transfer.          * When the last byte has been transferred Etrax will first set tr_tdy = 1          * and then busy = 0 (not in the same cycle). If we read busy before it         * has been set to 0 we will think that we should transfer more bytes          * and then tr_rdy would be 0 forever. This is solved by checking busy         * in the inner loop.         */                do {                *R_ATA_CTRL_DATA = ctrl | *ptr++;                while(!(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy)) &&                      (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)));        } while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy));        LED_DISK_WRITE(0);#endif  }/* * This is used for most PIO data transfers *from* the IDE interface */static void e100_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount){	e100_atapi_input_bytes(drive, buffer, wcount << 2);}/* * This is used for most PIO data transfers *to* the IDE interface */static voide100_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount){	e100_atapi_output_bytes(drive, buffer, wcount << 2);}/* * The multiplexor for ide_xxxput_data and atapi calls */static void e100_ideproc (ide_ide_action_t func, ide_drive_t *drive,	      void *buffer, unsigned int length){	switch (func) {		case ideproc_ide_input_data:			e100_ide_input_data(drive, buffer, length);			break;		case ideproc_ide_output_data:			e100_ide_input_data(drive, buffer, length);			break;		case ideproc_atapi_input_bytes:			e100_atapi_input_bytes(drive, buffer, length);			break;		case ideproc_atapi_output_bytes:			e100_atapi_output_bytes(drive, buffer, length);			break;		default:			printk("e100_ideproc: unsupported func %d!\n", func);			break;	}}/* we only have one DMA channel on the chip for ATA, so we can keep these statically */static etrax_dma_descr ata_descrs[MAX_DMA_DESCRS];static unsigned int ata_tot_size;/* * e100_ide_build_dmatable() prepares a dma request. * Returns 0 if all went okay, returns 1 otherwise. */static int e100_ide_build_dmatable (ide_drive_t *drive){	struct request *rq = HWGROUP(drive)->rq;	struct buffer_head *bh = rq->bh;	unsigned long size, addr;	unsigned int count = 0;	ata_tot_size = 0;	do {		/*		 * Determine addr and size of next buffer area.  We assume that		 * individual virtual buffers are always composed linearly in		 * physical memory.  For example, we assume that any 8kB buffer		 * is always composed of two adjacent physical 4kB pages rather		 * than two possibly non-adjacent physical 4kB pages.		 */		if (bh == NULL) {  /* paging and tape requests have (rq->bh == NULL) */			addr = virt_to_phys (rq->buffer);			size = rq->nr_sectors << 9;		} else {			/* group sequential buffers into one large buffer */			addr = virt_to_phys (bh->b_data);			size = bh->b_size;			while ((bh = bh->b_reqnext) != NULL) {				if ((addr + size) != virt_to_phys (bh->b_data))					break;				size += bh->b_size;			}		}		/* did we run out of descriptors? */		if(count >= MAX_DMA_DESCRS) {			printk("%s: too few DMA descriptors\n", drive->name);			return 1;		}		/* however, this case is more difficult - R_ATA_TRANSFER_CNT cannot be more		   than 65536 words per transfer, so in that case we need to either 		   1) use a DMA interrupt to re-trigger R_ATA_TRANSFER_CNT and continue with		      the descriptors, or		   2) simply do the request here, and get dma_intr to only ide_end_request on 		      those blocks that were actually set-up for transfer.		*/		if(ata_tot_size + size > 131072) {			printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, size);			return 1;		}		/* If size > 65536 it has to be splitted into new descriptors. Since we don't handle                    size > 131072 only one split is necessary */		if(size > 65536) { 		        /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */                        ata_descrs[count].sw_len = 0;  /* 0 means 65536, this is a 16-bit field */                        ata_descrs[count].ctrl = 0;                        ata_descrs[count].buf = addr;                        ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]);                        count++;                        ata_tot_size += 65536;                        /* size and addr should refere to not handled data */                        size -= 65536;                        addr += 65536;                }		/* ok we want to do IO at addr, size bytes. set up a new descriptor entry */                if(size == 65536) {                  ata_descrs[count].sw_len = 0;  /* 0 means 65536, this is a 16-bit field */                }                else {                  ata_descrs[count].sw_len = size;                }		ata_descrs[count].ctrl = 0;		ata_descrs[count].buf = addr;		ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]);		count++;		ata_tot_size += size;	} while (bh != NULL);	if (count) {		/* set the end-of-list flag on the last descriptor */		ata_descrs[count - 1].ctrl |= d_eol;		/* return and say all is ok */		return 0;	}	printk("%s: empty DMA table?\n", drive->name);	return 1;	/* let the PIO routines handle this weirdness */}static int config_drive_for_dma (ide_drive_t *drive){        const char **list;        struct hd_driveid *id = drive->id;        if (id && (id->capability & 1)) {                /* Enable DMA on any drive that supports mword2 DMA */                if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) {                        drive->using_dma = 1;                        return 0;               /* DMA enabled */                }                /* Consult the list of known "good" drives */                list = good_dma_drives;                while (*list) {                        if (!strcmp(*list++,id->model)) {                                drive->using_dma = 1;                                return 0;       /* DMA enabled */                        }                }        }        return 1;       /* DMA not enabled */}/* * etrax_dma_intr() is the handler for disk read/write DMA interrupts */static ide_startstop_t etrax_dma_intr (ide_drive_t *drive){	int i, dma_stat;	byte stat;	LED_DISK_READ(0);	LED_DISK_WRITE(0);	dma_stat = HWIF(drive)->dmaproc(ide_dma_end, drive);	stat = GET_STAT();			/* get drive status */	if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) {		if (!dma_stat) {			struct request *rq;			rq = HWGROUP(drive)->rq;			for (i = rq->nr_sectors; i > 0;) {				i -= rq->current_nr_sectors;				ide_end_request(1, HWGROUP(drive));			}			return ide_stopped;		}		printk("%s: bad DMA status\n", drive->name);	}	return ide_error(drive, "dma_intr", stat);}/* * e100_dmaproc() initiates/aborts DMA read/write operations on a drive. * * The caller is assumed to have selected the drive and programmed the drive's * sector address using CHS or LBA.  All that remains is to prepare for DMA * and then issue the actual read/write DMA/PIO command to the drive. * * For ATAPI devices, we just prepare for DMA and return. The caller should * then issue the packet command to the drive and call us again with * ide_dma_begin afterwards. * * Returns 0 if all went well. * Returns 1 if DMA read/write could not be started, in which case * the caller should revert to PIO for the current request. */static int e100_dmaproc (ide_dma_action_t func, ide_drive_t *drive){        static unsigned int reading; /* static to support ide_dma_begin semantics */	int atapi = 0;	D(printk("e100_dmaproc func %d\n", func));        switch (func) {		case ide_dma_verbose:			return 0;                case ide_dma_check:                        return config_drive_for_dma (drive);		case ide_dma_off:		case ide_dma_off_quietly:			/* ok.. we don't really need to do anything I think. */			return 0;                case ide_dma_write:                        reading = 0;			break;                case ide_dma_read:			reading = 1;                        break;                case ide_dma_begin:			/* begin DMA, used by ATAPI devices which want to issue the 			 * appropriate IDE command themselves.			 *			 * they have already called ide_dma_read/write to set the			 * static reading flag, now they call ide_dma_begin to do			 * the real stuff. we tell our code below not to issue			 * any IDE commands itself and jump into it. 			 */			atapi++;			goto dma_begin;		case ide_dma_end: /* returns 1 on error, 0 otherwise */			/* TODO: check if something went wrong with the DMA */			return 0;                default:                        printk("e100_dmaproc: unsupported func %d\n", func);                        return 1;        }	/* ATAPI-devices (not disks) first call ide_dma_read/write to set the direction	 * then they call ide_dma_begin after they have issued the appropriate drive command	 * themselves to actually start the chipset DMA. so we just return here if we're	 * not a diskdrive.	 */        if (drive->media != ide_disk)                return 0; dma_begin:	if(reading) {		RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */		WAIT_DMA(ATA_RX_DMA_NBR);		/* set up the Etrax DMA descriptors */				if(e100_ide_build_dmatable (drive))			return 1;		if(!atapi) {			/* set the irq handler which will finish the request when DMA is done */					ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL);						/* issue cmd to drive */						OUT_BYTE(WIN_READDMA, IDE_COMMAND_REG);		}		/* begin DMA */	      		*R_DMA_CH3_FIRST = virt_to_phys(ata_descrs);		*R_DMA_CH3_CMD   = IO_STATE(R_DMA_CH3_CMD, cmd, start);				/* initiate a multi word dma read using DMA handshaking */				*R_ATA_TRANSFER_CNT =			IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1);				*R_ATA_CTRL_DATA =			IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |			IO_STATE(R_ATA_CTRL_DATA, rw,       read) |			IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma)  |			IO_STATE(R_ATA_CTRL_DATA, handsh,   dma)  |			IO_STATE(R_ATA_CTRL_DATA, multi,    on)   |			IO_STATE(R_ATA_CTRL_DATA, dma_size, word);		LED_DISK_READ(1);		D(printk("dma read of %d bytes.\n", ata_tot_size)); 	} else {		/* writing */		RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */		WAIT_DMA(ATA_TX_DMA_NBR);		/* set up the Etrax DMA descriptors */		if(e100_ide_build_dmatable (drive))			return 1;		if(!atapi) {			/* set the irq handler which will finish the request when DMA is done */							ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL);						/* issue cmd to drive */						OUT_BYTE(WIN_WRITEDMA, IDE_COMMAND_REG);		}		/* begin DMA */				*R_DMA_CH2_FIRST = virt_to_phys(ata_descrs);		*R_DMA_CH2_CMD   = IO_STATE(R_DMA_CH2_CMD, cmd, start);				/* initiate a multi word dma write using DMA handshaking */				*R_ATA_TRANSFER_CNT =			IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1);				*R_ATA_CTRL_DATA =			IO_FIELD(R_ATA_CTRL_DATA, data,     IDE_DATA_REG) |			IO_STATE(R_ATA_CTRL_DATA, rw,       write) |			IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma) |			IO_STATE(R_ATA_CTRL_DATA, handsh,   dma) |			IO_STATE(R_ATA_CTRL_DATA, multi,    on) |			IO_STATE(R_ATA_CTRL_DATA, dma_size, word);		LED_DISK_WRITE(1);		D(printk("dma write of %d bytes.\n", ata_tot_size));	}	/* DMA started successfully */	return 0;}/* ide.c calls this, but we don't need to do anything particular */int ide_release_dma (ide_hwif_t *hwif){	return 1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -