📄 shmem.c
字号:
/* * Resizable virtual memory filesystem for Linux. * * Copyright (C) 2000 Linus Torvalds. * 2000 Transmeta Corp. * 2000-2001 Christoph Rohland * 2000-2001 SAP AG * * This file is released under the GPL. *//* * This virtual memory filesystem is heavily based on the ramfs. It * extends ramfs by the ability to use swap and honor resource limits * which makes it a completely usable filesystem. */#include <linux/config.h>#include <linux/module.h>#include <linux/init.h>#include <linux/devfs_fs_kernel.h>#include <linux/fs.h>#include <linux/mm.h>#include <linux/file.h>#include <linux/swap.h>#include <linux/pagemap.h>#include <linux/string.h>#include <linux/locks.h>#include <linux/smp_lock.h>#include <asm/uaccess.h>/* This magic number is used in glibc for posix shared memory */#define TMPFS_MAGIC 0x01021994#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))#define SHMEM_SB(sb) (&sb->u.shmem_sb)static struct super_operations shmem_ops;static struct address_space_operations shmem_aops;static struct file_operations shmem_file_operations;static struct inode_operations shmem_inode_operations;static struct file_operations shmem_dir_operations;static struct inode_operations shmem_dir_inode_operations;static struct vm_operations_struct shmem_vm_ops;LIST_HEAD (shmem_inodes);static spinlock_t shmem_ilock = SPIN_LOCK_UNLOCKED;atomic_t shmem_nrpages = ATOMIC_INIT(0); /* Not used right now */#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)/* * shmem_recalc_inode - recalculate the size of an inode * * @inode: inode to recalc * @swap: additional swap pages freed externally * * We have to calculate the free blocks since the mm can drop pages * behind our back * * But we know that normally * inodes->i_blocks/BLOCKS_PER_PAGE == * inode->i_mapping->nrpages + info->swapped * * So the mm freed * inodes->i_blocks/BLOCKS_PER_PAGE - * (inode->i_mapping->nrpages + info->swapped) * * It has to be called with the spinlock held. */static void shmem_recalc_inode(struct inode * inode){ unsigned long freed; freed = (inode->i_blocks/BLOCKS_PER_PAGE) - (inode->i_mapping->nrpages + SHMEM_I(inode)->swapped); if (freed){ struct shmem_sb_info * sbinfo = SHMEM_SB(inode->i_sb); inode->i_blocks -= freed*BLOCKS_PER_PAGE; spin_lock (&sbinfo->stat_lock); sbinfo->free_blocks += freed; spin_unlock (&sbinfo->stat_lock); }}/* * shmem_swp_entry - find the swap vector position in the info structure * * @info: info structure for the inode * @index: index of the page to find * @page: optional page to add to the structure. Has to be preset to * all zeros * * If there is no space allocated yet it will return -ENOMEM when * page == 0 else it will use the page for the needed block. * * returns -EFBIG if the index is too big. * * * The swap vector is organized the following way: * * There are SHMEM_NR_DIRECT entries directly stored in the * shmem_inode_info structure. So small files do not need an addional * allocation. * * For pages with index > SHMEM_NR_DIRECT there is the pointer * i_indirect which points to a page which holds in the first half * doubly indirect blocks, in the second half triple indirect blocks: * * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the * following layout (for SHMEM_NR_DIRECT == 16): * * i_indirect -> dir --> 16-19 * | +-> 20-23 * | * +-->dir2 --> 24-27 * | +-> 28-31 * | +-> 32-35 * | +-> 36-39 * | * +-->dir3 --> 40-43 * +-> 44-47 * +-> 48-51 * +-> 52-55 */#define SHMEM_MAX_BLOCKS (SHMEM_NR_DIRECT + ENTRIES_PER_PAGE * ENTRIES_PER_PAGE/2*(ENTRIES_PER_PAGE+1))static swp_entry_t * shmem_swp_entry (struct shmem_inode_info *info, unsigned long index, unsigned long page) { unsigned long offset; void **dir; if (index < SHMEM_NR_DIRECT) return info->i_direct+index; index -= SHMEM_NR_DIRECT; offset = index % ENTRIES_PER_PAGE; index /= ENTRIES_PER_PAGE; if (!info->i_indirect) { info->i_indirect = (void *) page; return ERR_PTR(-ENOMEM); } dir = info->i_indirect + index; if (index >= ENTRIES_PER_PAGE/2) { index -= ENTRIES_PER_PAGE/2; dir = info->i_indirect + ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; index %= ENTRIES_PER_PAGE; if(!*dir) { *dir = (void *) page; /* We return since we will need another page in the next step */ return ERR_PTR(-ENOMEM); } dir = ((void **)*dir) + index; } if (!*dir) { if (!page) return ERR_PTR(-ENOMEM); *dir = (void *)page; } return ((swp_entry_t *)*dir) + offset;}/* * shmem_alloc_entry - get the position of the swap entry for the * page. If it does not exist allocate the entry * * @info: info structure for the inode * @index: index of the page to find */static inline swp_entry_t * shmem_alloc_entry (struct shmem_inode_info *info, unsigned long index){ unsigned long page = 0; swp_entry_t * res; if (index >= SHMEM_MAX_BLOCKS) return ERR_PTR(-EFBIG); if (info->next_index <= index) info->next_index = index + 1; while ((res = shmem_swp_entry(info,index,page)) == ERR_PTR(-ENOMEM)) { page = get_zeroed_page(GFP_USER); if (!page) break; } return res;}/* * shmem_free_swp - free some swap entries in a directory * * @dir: pointer to the directory * @count: number of entries to scan */static int shmem_free_swp(swp_entry_t *dir, unsigned int count){ swp_entry_t *ptr, entry; int freed = 0; for (ptr = dir; ptr < dir + count; ptr++) { if (!ptr->val) continue; entry = *ptr; *ptr = (swp_entry_t){0}; freed++; free_swap_and_cache(entry); } return freed;}/* * shmem_truncate_direct - free the swap entries of a whole doubly * indirect block * * @dir: pointer to the pointer to the block * @start: offset to start from (in pages) * @len: how many pages are stored in this block * * Returns the number of freed swap entries. */static inline unsigned long shmem_truncate_direct(swp_entry_t *** dir, unsigned long start, unsigned long len) { swp_entry_t **last, **ptr; unsigned long off, freed = 0; if (!*dir) return 0; last = *dir + (len + ENTRIES_PER_PAGE-1) / ENTRIES_PER_PAGE; off = start % ENTRIES_PER_PAGE; for (ptr = *dir + start/ENTRIES_PER_PAGE; ptr < last; ptr++) { if (!*ptr) { off = 0; continue; } if (!off) { freed += shmem_free_swp(*ptr, ENTRIES_PER_PAGE); free_page ((unsigned long) *ptr); *ptr = 0; } else { freed += shmem_free_swp(*ptr+off,ENTRIES_PER_PAGE-off); off = 0; } } if (!start) { free_page((unsigned long) *dir); *dir = 0; } return freed;}/* * shmem_truncate_indirect - truncate an inode * * @info: the info structure of the inode * @index: the index to truncate * * This function locates the last doubly indirect block and calls * then shmem_truncate_direct to do the real work */static inline unsigned longshmem_truncate_indirect(struct shmem_inode_info *info, unsigned long index){ swp_entry_t ***base; unsigned long baseidx, len, start; unsigned long max = info->next_index-1; if (max < SHMEM_NR_DIRECT) { info->next_index = index; return shmem_free_swp(info->i_direct + index, SHMEM_NR_DIRECT - index); } if (max < ENTRIES_PER_PAGE * ENTRIES_PER_PAGE/2 + SHMEM_NR_DIRECT) { max -= SHMEM_NR_DIRECT; base = (swp_entry_t ***) &info->i_indirect; baseidx = SHMEM_NR_DIRECT; len = max+1; } else { max -= ENTRIES_PER_PAGE*ENTRIES_PER_PAGE/2+SHMEM_NR_DIRECT; if (max >= ENTRIES_PER_PAGE*ENTRIES_PER_PAGE*ENTRIES_PER_PAGE/2) BUG(); baseidx = max & ~(ENTRIES_PER_PAGE*ENTRIES_PER_PAGE-1); base = (swp_entry_t ***) info->i_indirect + ENTRIES_PER_PAGE/2 + baseidx/ENTRIES_PER_PAGE/ENTRIES_PER_PAGE ; len = max - baseidx + 1; baseidx += ENTRIES_PER_PAGE*ENTRIES_PER_PAGE/2+SHMEM_NR_DIRECT; } if (index > baseidx) { info->next_index = index; start = index - baseidx; } else { info->next_index = baseidx; start = 0; } return shmem_truncate_direct(base, start, len);}static void shmem_truncate (struct inode * inode){ unsigned long index; unsigned long freed = 0; struct shmem_inode_info * info = SHMEM_I(inode); down(&info->sem); inode->i_ctime = inode->i_mtime = CURRENT_TIME; spin_lock (&info->lock); index = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; while (index < info->next_index) freed += shmem_truncate_indirect(info, index); info->swapped -= freed; shmem_recalc_inode(inode); spin_unlock (&info->lock); up(&info->sem);}static void shmem_delete_inode(struct inode * inode){ struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); inode->i_size = 0; if (inode->i_op->truncate == shmem_truncate){ spin_lock (&shmem_ilock); list_del (&SHMEM_I(inode)->list); spin_unlock (&shmem_ilock); shmem_truncate (inode); } spin_lock (&sbinfo->stat_lock); sbinfo->free_inodes++; spin_unlock (&sbinfo->stat_lock); clear_inode(inode);}static int shmem_clear_swp (swp_entry_t entry, swp_entry_t *ptr, int size) { swp_entry_t *test; for (test = ptr; test < ptr + size; test++) { if (test->val == entry.val) { swap_free (entry); *test = (swp_entry_t) {0}; return test - ptr; } } return -1;}static int shmem_unuse_inode (struct shmem_inode_info *info, swp_entry_t entry, struct page *page){ swp_entry_t *ptr; unsigned long idx; int offset; idx = 0; spin_lock (&info->lock); offset = shmem_clear_swp (entry, info->i_direct, SHMEM_NR_DIRECT); if (offset >= 0) goto found; for (idx = SHMEM_NR_DIRECT; idx < info->next_index; idx += ENTRIES_PER_PAGE) { ptr = shmem_swp_entry(info, idx, 0); if (IS_ERR(ptr)) continue; offset = shmem_clear_swp (entry, ptr, ENTRIES_PER_PAGE); if (offset >= 0) goto found; } spin_unlock (&info->lock); return 0;found: delete_from_swap_cache(page); add_to_page_cache(page, info->inode->i_mapping, offset + idx); SetPageDirty(page); SetPageUptodate(page); info->swapped--; spin_unlock(&info->lock); return 1;}/* * unuse_shmem() search for an eventually swapped out shmem page. */void shmem_unuse(swp_entry_t entry, struct page *page){ struct list_head *p; struct shmem_inode_info * info; spin_lock (&shmem_ilock); list_for_each(p, &shmem_inodes) { info = list_entry(p, struct shmem_inode_info, list); if (shmem_unuse_inode(info, entry, page)) break; } spin_unlock (&shmem_ilock);}/* * Move the page from the page cache to the swap cache. * * The page lock prevents multiple occurences of shmem_writepage at * once. We still need to guard against racing with * shmem_getpage_locked(). */static int shmem_writepage(struct page * page){ struct shmem_inode_info *info; swp_entry_t *entry, swap; struct address_space *mapping; unsigned long index; struct inode *inode; if (!PageLocked(page)) BUG(); if (!PageLaunder(page)) return fail_writepage(page); mapping = page->mapping; index = page->index; inode = mapping->host; info = SHMEM_I(inode); if (info->locked) return fail_writepage(page);getswap: swap = get_swap_page(); if (!swap.val) return fail_writepage(page); spin_lock(&info->lock); entry = shmem_swp_entry(info, index, 0); if (IS_ERR(entry)) /* this had been allocated on page allocation */ BUG(); shmem_recalc_inode(inode); if (entry->val) BUG(); /* Remove it from the page cache */ remove_inode_page(page); page_cache_release(page); /* Add it to the swap cache */ if (add_to_swap_cache(page, swap) != 0) { /* * Raced with "speculative" read_swap_cache_async. * Add page back to page cache, unref swap, try again. */ add_to_page_cache_locked(page, mapping, index); spin_unlock(&info->lock); swap_free(swap); goto getswap; } *entry = swap; info->swapped++; spin_unlock(&info->lock); SetPageUptodate(page); set_page_dirty(page); UnlockPage(page); return 0;}/* * shmem_getpage_locked - either get the page from swap or allocate a new one * * If we allocate a new one we do not mark it dirty. That's up to the * vm. If we swap it in we mark it dirty since we also free the swap * entry since a page cannot live in both the swap and page cache * * Called with the inode locked, so it cannot race with itself, but we * still need to guard against racing with shm_writepage(), which might * be trying to move the page to the swap cache as we run. */static struct page * shmem_getpage_locked(struct shmem_inode_info *info, struct inode * inode, unsigned long idx){ struct address_space * mapping = inode->i_mapping; struct shmem_sb_info *sbinfo; struct page * page; swp_entry_t *entry;repeat: page = find_lock_page(mapping, idx); if (page) return page; entry = shmem_alloc_entry (info, idx); if (IS_ERR(entry)) return (void *)entry; spin_lock (&info->lock);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -